Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155593, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621329

RESUMO

BACKGROUND: Preventing joint edema is crucial in halting osteoarthritis (OA) progression. Growing clinical evidence indicate that Jianpi-Tongluo Formula (JTF) may have a promising anti-edema effect. However, the therapeutic properties of JTF and the underlying mechanisms remains unclear. MATERIALS AND METHODS: An OA rat model was established and employed to evaluate pharmacological effects of JTF in vivo based on dynamic histopathologic assessments and micro-CT observations. Then, OA-related genes and potential targets of JTF were identified through clinical transcriptomic data analysis and "disease gene-drug target" network analysis, which were verified by a series of in vivo experiments. RESULTS: JTF administration effectively reduced pain and joint edema, inhibited matrix degradation, chondrocyte apoptosis, and aquaporin expression in OA rats. Notably, JTF dose-dependently reversed damage-associated molecular patterns and inflammatory factor upregulation. Mechanically, our "disease gene-drug target" network analysis indicated that the NCOA4-HMGB1-GSK3B-AQPs axis, implicated in ferroptosis and aquaporin dysregulation, may be potentially served as a target of JTF against OA. Accordingly, JTF mitigated NCOA4, HMGB1, and GSK3B expression, oxidative stress, and iron metabolism aberrations in OA rats. Furthermore, JTF treatment significantly attenuated the aberrant upregulation of AQP1, AQP3, and AQP4 proteins observed in cartilage tissues of OA rats. CONCLUSION: Our data reveal for the first time that JTF may exert cartilage protective and anti-edema effects in osteoarthritis therapy by inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation.


Assuntos
Ferroptose , Proteína HMGB1 , Osteoartrite , Ratos Sprague-Dawley , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ferroptose/efeitos dos fármacos , Ratos , Masculino , Proteína HMGB1/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Edema/tratamento farmacológico , Aquaporinas/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Modelos Animais de Doenças , Aquaporina 3/metabolismo , Aquaporina 1/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6457-6474, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212003

RESUMO

The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects. Baimai Ointment inhibited the second-phase nociceptive response of mice in the formalin test, increased the hot plate threshold of normal mice, and down-regulated the expression of inflammatory cytokines in the spinal cord. Network analysis showed that Baimai Ointment had synergistic effect in the treatment of CCD and was related to descending inhibition/facilitation system and neuroinflammation. Furthermore, behavioral tests, Western blot, and immunofluorescence assay revealed that the pain-relieving effect of Baimai Ointment on CCD may be related to the regulation of the interaction between neuroactive ligand and receptors(neuroligands) such as CHRNA7, ADRA2A, and ADRB2, and the down-regulation of the expression of NOS2/pERK/PI3K, the core regulatory element of HIF-1 signaling pathway in spinal microglia. The findings preliminarily reveal the mechanism of relaxing sinew and activating collaterals of Baimai Ointment in the treatment of Baimai disease, providing a reference for the rational drug use and further research of this agent.


Assuntos
Dor Crônica , Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Dor Crônica/complicações , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Ligantes , Transdução de Sinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo
4.
Front Immunol ; 13: 912933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799788

RESUMO

Growing evidence shows that Baihu-Guizhi decoction (BHGZD), a traditional Chinese medicine (TCM)-originated disease-modifying anti-rheumatic prescription, may exert a satisfying clinical efficacy for rheumatoid arthritis (RA) therapy. In our previous studies, we verified its immunomodulatory and anti-inflammatory activities. However, bioactive compounds (BACs) of BHGZD and the underlying mechanisms remain unclear. Herein, an integrative research strategy combining UFLC-Q-TOF-MS/MS, gene expression profiling, network calculation, pharmacokinetic profiling, surface plasmon resonance, microscale thermophoresis, and pharmacological experiments was carried out to identify the putative targets of BHGZD and underlying BACs. After that, both in vitro and in vivo experiments were performed to determine the drug effects and pharmacological mechanisms. As a result, the calculation and functional modularization based on the interaction network of the "RA-related gene-BHGZD effective gene" screened the TLR4/PI3K/AKT/NFκB/NLRP3 signaling-mediated pyroptosis to be one of the candidate effective targets of BHGZD for reversing the imbalance network of "immune-inflammation" during RA progression. In addition, both mangiferin (MG) and cinnamic acid (CA) were identified as representative BACs acting on that target, for the strong binding affinities between compounds and target proteins, good pharmacokinetic features, and similar pharmacological effects to BHGZD. Notably, both BHGZD and the two-BAC combination of MG and CA effectively alleviated the disease severity of the adjuvant-induced arthritis-modified rat model, including elevating pain thresholds, relieving joint inflammation and bone erosion via inhibiting NF-κB via TLR4/PI3K/AKT signaling to suppress the activation of the NLRP3 inflammasome, leading to the downregulation of downstream caspase-1, the reduced release of IL-1ß and IL-18, and the modulation of GSDMD-mediated pyroptosis. Consistent data were obtained based on the in vitro pyroptosis cellular models of RAW264.7 and MH7A cells induced by LPS/ATP. In conclusion, these findings offer an evidence that the MG and CA combination identified from BHGZD may interact with TLR4/PI3K/AKT/NFκB signaling to inhibit NLRP3 inflammasome activation and modulate pyroptosis, which provides the novel representative BACs and pharmacological mechanisms of BHGZD against active RA. Our data may shed new light on the mechanisms of the TCM formulas and promote the modernization development of TCM and drug discovery.


Assuntos
Artrite Reumatoide , Piroptose , Animais , Artrite Reumatoide/tratamento farmacológico , Cinamatos , Combinação de Medicamentos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectrometria de Massas em Tandem , Receptor 4 Toll-Like/metabolismo , Xantonas
5.
Phytomedicine ; 104: 154216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35749826

RESUMO

BACKGROUND: Activation of immune system in rheumatoid arthritis (RA) consumes amount of energy, and the energy metabolic signals may be a potential target for RA therapy. Baihu-Guizhi decoction (BHGZD) achieves satisfactory therapeutic effects in RA in clinics by recovering the adjacent articular cartilage and bone destruction, and abnormal articular temperature. However, its pharmacological material basis and molecular mechanisms have not been fully elucidated. PURPOSE: This study focused on exploring the potential acting mechanism of BHGZD against RA, and identifying its main bioactive compounds (BACs) of the combination of mangiferin and glycyrrhizic acid. METHODS: Key putative targets of BHGZD acting on adjuvant-induced arthritis (AIA)-M rats were screened by the transcriptomic profiling of the whole blood cells and synovium tissues collected from rats in normal control, AIA-M model and AIA-M-BHGZD treatment groups. Then, BACs of BHGZD against RA were identified using Ultra Performance Liquid Chromatography-Mass spectrum/Mass spectrum, molecular docking, surface plasmon resonance and pharmacokinetic analysis. In vivo experiments based on AIA-M rats and in vitro experiments based on 3T3-L1 preadipocytes were performed to verify the pharmacological effects of BACs against RA and the corresponding mechanisms. RESULTS: PKA-ADCY5-PPARγ-PGC 1α-UCP1-PRDM16 signal axis was demonstrated to be the candidate targets of BHGZD against RA and was involved in maintaining the balance of thermogenesis and energy metabolism, according to the transcriptional regulatory network analysis based on "herbs-putative targets-disease interaction network". Then, mangiferin from Rhizoma Anemarrhenae and glycyrrhizic acid from Radix Glycytthizae were identified as the main BACs of BHGZD against RA due to their highly accumulation in the blood in vivo, strong binding affinities with the two candidate targets of BHGZD against RA-ADCY5 and PPARγ, as well as the in vivo and in vitro strong regulation effects on energy metabolism disturbance. CONCLUSIONS: These findings offer evidence that the combination of mangiferin and glycyrrhizic acid from BHGZD may be a promising candidate drug for RA therapy, and also provide an important reference for the development and modernization of traditional Chinese formulae.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Animais , Artrite Reumatoide/tratamento farmacológico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Metabolismo Energético , Ácido Glicirrízico/farmacologia , Simulação de Acoplamento Molecular , PPAR gama , Ratos , Índice de Gravidade de Doença , Termogênese , Xantonas
6.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6730-6740, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604923

RESUMO

Chronic inflammatory pain is mainly manifested by peripheral sensitization. Baimai Ointment(BMO), a classical Tibetan medicine for external use, has good clinical efficacy in the treatment of chronic inflammatory pain, while its pharmacodynamics and mechanism for relieving peripheral sensitization remain unclear. This study established an animal model of chronic inflammatory pain induced by complete Freund's adjuvant to explore the mechanism of BMO in the treatment of chronic inflammatory pain by behavioral test, side effect assessment, network analysis, and experimental verification. The pharmacodynamics experiment showed that BMO increased the thresholds of mechanical pain sensitivity and thermal radiation pain sensitivity of chronic inflammatory pain mice in a dose-dependent manner, and had inhibitory effect on foot swelling, inflammatory mediator, and the expression of transient receptor potential vanilloid-1(TRPV1) and transient receptor potential A1(TRPA1). The results of body weight monitoring, pain sensitivity threshold detection in normal mice, rotarod performance test, and forced swimming test showed that BMO had no obvious toxic or side effect. The network analysis of 51 candidate active molecules selected according to the efficacy of BMO, content of main components, and ADME parameters showed that the inhibitory effect of BMO on chronic inflammatory pain was associated with the core regulatory elements of tumor necrosis factor(TNF) and T cell receptor signaling pathways. BMO down-regulated the protein levels of mitogen-activated protein kinase 14(MAPK14), MAPK1, and prostaglandin-endoperoxide synthase 2(PTGS2), and up-regulated the phosphorylation le-vel of glycogen synthase kinase 3 beta(GSK3 B) in the plantar tissue of mice. In conclusion, BMO can effectively relieve peripheral sensitization of chronic inflammatory pain without inducing tolerance and obvious toxic and side effects. The relevant mechanism may be related to the regulation of BMO on core regulatory elements of TNF and T cell receptor signaling pathways in surrounding tissues.


Assuntos
Quinase 3 da Glicogênio Sintase , Hiperalgesia , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Quinase 3 da Glicogênio Sintase/efeitos adversos , Quinase 3 da Glicogênio Sintase/metabolismo , Dor/tratamento farmacológico , Dor/induzido quimicamente , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Canais de Cátion TRPV/efeitos adversos
7.
Front Pharmacol ; 12: 743086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675809

RESUMO

As a traditional Chinese medicine-originated disease-modifying anti-rheumatic drug prescription, Baihu-Guizhi decoction (BHGZD) is extensively used for the treatment of rheumatoid arthritis (RA) with a satisfying therapeutic efficacy. Mechanically, our previous data indicated that BHGZD may ameliorate RA partially by restoring the balance of the "inflammation-immune" system through regulating the TLR4-c-Fos-IL2-TNF-alpha axis. Toll-like receptor 4 (TLR4) has been revealed to be involved in the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome complex. Thus, the aim of the current study was to determine the regulatory effects of BHGZD on the TLR4-mediated inflammasome activation during RA progression based on the modified adjuvant-induced arthritis model (AIA-M) and the lipopolysaccharide/adenosine triphosphate (LPS/ATP)-induced pyroptosis cellular models. As a result, oral administration of BHGZD exhibited prominent improvement in the disease severity of AIA-M rats, such as reducing the redness and swelling of joints, arthritis incidence, arthritic scores, and diameter of the limb and increasing pain thresholds. In line with the in vivo findings, BHGZD treatment effectively inhibited the LPS/ATP-induced pyroptosis of both Raw264.7 macrophage and MH7A cells in vitro by reducing pyroptotic cell death morphology (swollen cells) and decreasing propidium iodide-positive and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL)-positive cells. Notably, the increased expression levels of TLR4, NLRP3, interleukin 1ß, and interleukin 18 proteins and the elevated activities of caspase-1 and lactic dehydrogenase in in vivo and in vitro disease models were markedly reversed by the treatment with BHGZD. In conclusion, the above findings proved the immunomodulatory and anti-inflammatory activities of BHGZD, especially in pyroptosis, which may be attributed to the activation of TLR4-mediated NLRP3 inflammasome signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA