Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 409: 124997, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421877

RESUMO

The purpose of this study was to reveal the accumulation and phytotoxicity mechanism of sweet potato (Ipomoea batatas L.) roots following exposure to toxic levels of uranium (U) and cadmium (Cd). We selected two accumulation-type sweet potato cultivars as experimental material. The varietal differences in U and Cd accumulation and physiological metabolism were analyzed by a hydroponic experiment. High concentrations of U and Cd inhibited the growth and development of sweet potato and damaged the microstructure of root. The roots were the main accumulating organs of U and Cd in both sweet potato. Root cell walls and vacuoles (soluble components) were the main distribution sites of U and Cd. The chemical forms of U in the two sweet potato varieties were insoluble and oxalate compounds, while Cd mainly combined with pectin and protein. U and Cd changed the normal mineral nutrition metabolism in the roots, and also significantly inhibited the photosynthetic metabolism of sweet potatoes. RNA-seq showed that the cell wall and plant hormone signal transduction pathways responded to either U or Cd toxicity in both varieties. The inorganic ion transporter and organic compound transporter in roots of both sweet potato varieties are sensitive to U and Cd toxicity.


Assuntos
Ipomoea batatas , Urânio , Cádmio/toxicidade , Reguladores de Crescimento de Plantas , Raízes de Plantas , Urânio/toxicidade
2.
J Hazard Mater ; 386: 121437, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899027

RESUMO

Uranium (U) is a nonessential element that is readily adsorbed and retained in plant roots, causing root damage plants, rather than being translocated to other parts of the plant. The phytotoxicity mechanism of U is poorly understood. In this study, Vicia faba, a model plant for toxicological research, was selected as experimental material to investigate the phytotoxicity mechanism of U. In this study, the effects of U on the growth and development, methonome, transcriptome and mineral nutrient metabolism of V. faba were studied under different U treatments (0-25 µM) by integrating metabolomics, transcriptomic, and mineral nutrient metabolism analysis techniques. The results showed that U accumulation in roots and aboveground parts reached 164.34-927.90 µg/pot, and 0.028-0.119 µg/pot, respectively. U was mainly accumulated in the cell wall of roots, which damaged the root microstructure and inhibited root growth and development. In terms of mineral nutrient metabolism, U treatment (0-25 µM) led to changes in mineral metabolic profiles of seedlings. In total, 612 different metabolites were identified in nontargeted metabolomics, including 309 significantly upregulated metabolites and 303 significantly downregulated metabolites. Using RNA-seq, 4974 differentially expressed genes (DEGs) were identified under the high-concentration U treatment (25 µM), including 1654 genes significantly upregulated genes and 3320 genes significantly downregulated genes. Metabolic pathway analysis showed that a high concentration of U led to an imbalance of mineral nutrient metabolism in plants and changes in the metabolism and transcriptome pathway of plants, including alterations in the function of plasmodesmata and auxin signal transduction pathway. The latter finding may potentially explain the toxic effect of U on plant roots.


Assuntos
Metabolômica , Minerais/metabolismo , Transcriptoma , Urânio/toxicidade , Vicia faba/efeitos dos fármacos , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Vicia faba/genética , Vicia faba/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA