Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 17(12): 2160-2168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773438

RESUMO

The soil priming effect (PE), defined as the modification of soil organic matter decomposition by labile carbon (C) inputs, is known to influence C storage in terrestrial ecosystems. However, how chronic nutrient addition, particularly in leguminous and non-leguminous forests, will affect PE through interaction with nutrient (e.g., nitrogen and phosphorus) availability is still unclear. Therefore, we collected soils from leguminous and non-leguminous subtropical plantations across a suite of historical nutrient addition regimes. We added 13C-labeled glucose to investigate how background soil nutrient conditions and microbial communities affect priming and its potential microbial mechanisms. Glucose addition increased soil organic matter decomposition and prompted positive priming in all soils, regardless of dominant overstory tree species or fertilizer treatment. In non-leguminous soil, only combined nitrogen and phosphorus addition led to a higher positive priming than the control. Conversely, soils beneath N-fixing leguminous plants responded positively to P addition alone, as well as to joint NP addition compared to control. Using DNA stable-isotope probing, high-throughput quantitative PCR, enzyme assays and microbial C substrate utilization, we found that positive PE was associated with increased microbial C utilization, accompanied by an increase in microbial community activity, nutrient-related gene abundance, and enzyme activities. Our findings suggest that the balance between soil available N and P effects on the PE,  was dependent on rhizosphere microbial community composition. Furthermore, these findings highlight the roles of the interaction between plants and their symbiotic microbial communities in affecting soil priming and improve our understanding of the potential microbial pathways underlying soil PEs.


Assuntos
Fabaceae , Microbiota , Solo/química , Nitrogênio/análise , Fósforo , Microbiologia do Solo , Florestas , Plantas/metabolismo , Carbono/análise , Glucose/metabolismo
2.
DNA Res ; 30(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37228100

RESUMO

Plantago is a major genus belonging to the Plantaginaceae family and is used in herbal medicine, functional food, and pastures. Several Plantago species are also characterized by their global distribution, but the mechanism underpinning this is not known. Here, we present a high-quality, chromosome-level genome assembly of Plantago major L., a species of Plantago, by incorporating Oxford Nanopore sequencing and Hi-C technologies. The genome assembly size was approximately 671.27 Mb with a contig N50 length of 31.30 Mb. 31,654 protein-coding genes were identified from the genome. Evolutionary analysis showed that P. major diverged from other Lamiales species at ~62.18 Mya and experienced two rounds of WGD events. Notably, many gene families related to plant acclimation and adaptation expanded. We also found that many polyphenol biosynthesis genes showed high expression patterns in roots. Some amino acid biosynthesis genes, such as those involved in histidine synthesis, were highly induced under metal (Ni) stress that led to the accumulation of corresponding metabolites. These results suggest persuasive arguments for the global distribution of P. major through multiscale analysis. Decoding the P. major genome provides a valuable genomic resource for research on dissecting biological function, molecular evolution, taxonomy, and breeding.


Assuntos
Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Melhoramento Vegetal , Cromossomos , Aclimatação , Solo , Filogenia
3.
Glob Chang Biol ; 27(2): 454-466, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068453

RESUMO

The soil nitrogen (N) and phosphorus (P) availability often constrains soil carbon (C) pool, and elevated N deposition could further intensify soil P limitation, which may affect soil C cycling in these N-rich and P-poor ecosystems. Soil microbial residues may not only affect soil organic carbon (SOC) pool but also impact SOC stability through soil aggregation. However, how soil nutrient availability and aggregate fractions affect microbial residues and the microbial residue contribution to SOC is still not well understood. We took advantage of a 10-year field fertilization experiment to investigate the effects of nutrient additions, soil aggregate fractions, and their interactions on the concentrations of soil microbial residues and their contribution to SOC accumulation in a tropical coastal forest. We found that continuous P addition greatly decreased the concentrations of microbial residues and their contribution to SOC, whereas N addition had no significant effect. The P-stimulated decreases in microbial residues and their contribution to SOC were presumably due to enhanced recycling of microbial residues via increased activity of residue-decomposing enzymes. The interactive effects between soil aggregate fraction and nutrient addition were not significant, suggesting a weak role of physical protection by soil aggregates in mediating microbial responses to altered soil nutrient availability. Our data suggest that the mechanisms driving microbial residue responses to increased N and P availability might be different, and the P-induced decrease in the contribution of microbial residues might be unfavorable for the stability of SOC in N-rich and P-poor tropical forests. Such information is critical for understanding the role of tropical forests in the global carbon cycle.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Fósforo , Microbiologia do Solo
4.
Ecology ; 95(7): 1819-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163116

RESUMO

Temperature and nutrients are major limiting factors in subarctic tundra. Experimental manipulation of nutrient availability along elevational gradients (and thus temperature) can improve our understanding of ecological responses to climate change. However, no study to date has explored impacts of nutrient addition along a tundra elevational gradient, or across contrasting vegetation types along any elevational gradient. We set up a full factorial nitrogen (N) and phosphorus (P) fertilization experiment in each of two vegetation types (heath and meadow) at 500 m, 800 m, and 1000 m elevation in northern Swedish tundra. We predicted that plant and microbial communities in heath or at lower elevations would be more responsive to N addition while communities in meadow or at higher elevations would be more responsive to P addition, and that fertilizer effects would vary more with elevation for the heath than for the meadow. Although our results provided little support for these predictions, the relationship between nutrient limitation and elevation differed between vegetation types. Most plant and microbial properties were responsive to N and/or P fertilization, but responses often varied with elevation and/or vegetation type. For instance, vegetation density significantly increased with N + P fertilization relative to the other fertilizer treatments, and this increase was greatest at the lowest elevation for the heath but at the highest elevation for the meadow. Arbuscular mycorrhizae decreased with P fertilization at 500 m for the meadow, but with all fertilizer treatments in both vegetation types at 800 m. Fungal to bacterial ratios were enhanced by N+ P fertilization for the two highest elevations in the meadow only. Additionally, microbial responses to fertilization were primarily direct rather than indirect via plant responses, pointing to a decoupled response of plant and microbial communities to nutrient addition and elevation. Because our study shows how two community types differ in their responses to fertilization and elevation, and because the temperature range across this gradient is approximately 3 degrees C, our study is informative about how nutrient limitation in tundra may be influenced by temperature shifts that are comparable to those expected under climate change during this century.


Assuntos
Altitude , Bactérias/crescimento & desenvolvimento , Ecossistema , Fungos/fisiologia , Nitrogênio/farmacologia , Fósforo/farmacologia , Plantas/efeitos dos fármacos , Clima , Fertilizantes , Desenvolvimento Vegetal , Solo , Suécia , Temperatura
5.
PLoS One ; 8(12): e84130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386340

RESUMO

Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N]), phosphorus ([P]), and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra) transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation). We also measured the relative growth rate (RGR) of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained) generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Clima Tropical , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transplante , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
6.
Anal Bioanal Chem ; 382(4): 1060-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15928946

RESUMO

A new method is proposed for simultaneous determination of traces of arsenic (As) and selenium (Se) in biological samples by hydride-generation double-channel non-dispersive atomic-fluorescence spectrometry (HG-AFS) from tartaric acid media. The effects of analytical conditions on fluorescence signal intensity were investigated and optimized. Interferences from coexisting ions were evaluated. Under optimum conditions linear response ranges above 20 microg L(-1) for As and 32 microg L(-1) for Se were obtained with detection limits of 0.13 and 0.12 microg L(-1), respectively. The precision for eleven-fold determination of As at the 4 microg L(-1) level and of Se at the 8 microg L(-1) level were 2.7 and 1.9% (RSD), respectively. Recoveries of 92.5-95.5% for As and 101.2-108.4% for Se were obtained for four biological samples and two certified biological reference materials. The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for simultaneous determination of As and Se in biological samples.


Assuntos
Arsênio/análise , Neoplasias Hepáticas/química , Selênio/análise , Espectrofotometria Atômica/métodos , Animais , Boroidretos/química , Bovinos , Coelhos , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA