Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Environ Manage ; 352: 120053, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211429

RESUMO

The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.


Assuntos
Fósforo , Poluentes Químicos da Água , Bentonita , Lantânio , Poluentes Químicos da Água/análise , Lagos , Água
2.
Environ Pollut ; 335: 122350, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572845

RESUMO

Limited human activities in catchments make remote alpine lakes valuable sites for studying the evolution of lake environments in response to climate change and atmospheric deposition; however, this issue remains rarely studied owing to the scarcity of monitoring data. In this study, water quality evolution in Lake Jiren, a remote alpine lake on the southeastern margin of the Tibetan Plateau, over the past two centuries was reconstructed through geochemical analyses of aliphatic hydrocarbons, major and trace elements, and organic matter (OM) pyrolysis products in a dated sediment core, and the associated drivers were identified by temporally comparing the geochemical results with document records. All geochemical data demonstrated that the lake water remained relatively pure until 1947, after which the n-alkane and αß-hopane proxies indicated eutrophication and petroleum contamination. The OM pyrolysis proxy hydrocarbon index indicated more eutrophic conditions after 1957. Concurrently, hypolimnetic deoxygenation increased, as indicated by redox-sensitive proxies, such as the enrichment factors (EFs) of molybdenum (Mo). These proxies recorded further intensification of deoxygenation after 1976. The EFs for other trace elements indicated cadmium contamination after 1967. The greater anthropogenic emissions of reactive nitrogen, petroleum products, and heavy metals in East and South Asia since approximately 1950 and the subsequent atmospheric transport of these materials to the lake might be the basic driver of water quality deterioration. Eutrophication induced by nitrogen deposition was responsible for increased hypolimnetic deoxygenation by enhancing phytoplankton productivity and OM input. The further intensification of deoxygenation was attributed to climate warming since the 1970s, as prolonged water column stratification under this condition decreased oxygen input from the epilimnion to the lake bottom. These findings may be beneficial for understanding the natural and anthropogenic effects on the water quality of alpine lakes and help in the environmental management of Lake Jiren and other alpine lakes.


Assuntos
Petróleo , Oligoelementos , Poluentes Químicos da Água , Humanos , Qualidade da Água , Tibet , Oligoelementos/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Hidrocarbonetos/análise , Petróleo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , China
3.
Sci Total Environ ; 842: 156967, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764152

RESUMO

Biomanipulation by piscivore stocking has been widely used to combat eutrophication in north temperate lakes, but its applicability in warm lakes has not yet been well elucidated. Here, we used experimental mesocosms to test the effects of a native benthi-piscivore (snakehead, Channa argus Cantor) on water clarity under subtropical conditions where small omni-benthivorous fish like crucian carp (Carassius carassius L.) prevail. Our results showed that, despite of a great reduction of crucian carp biomass, snakehead stocking did not create a strong trophic cascade as neither (herbivorous) zooplankton biomass nor their grazing pressure, indicated by biomass ratio of (herbivorous) zooplankton to phytoplankton, changed significantly. Moreover, snakehead stocking significantly increased water non-algal turbidity as well as nutrient and chlorophyll-a concentrations, suggesting that these benthi-piscivores also disturbed sediments like crucian carp did. Our study showed that biomanipulation by stocking of snakehead does not facilitate clear-water state in warm shallow lakes, even on the short-term.


Assuntos
Carpas , Água , Animais , Biomassa , Eutrofização , Lagos , Fósforo , Fitoplâncton , Zooplâncton
4.
J Hazard Mater ; 433: 128791, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366452

RESUMO

Humic acid (HA) and phosphate interactions play a vital role in the biogeochemical cycle of carbon and nutrients and thus the trophic state of a lake. The adsorption behavior of HAs to sediments in the absence and presence of phosphate was investigated in this study. Three types of HAs were used, AHA from algae-dominated lake sediments, MHA from macrophyte-dominated lake sediments, and a reference HA (RHA) with terrestrial sources. The adsorption capacity of lake sediments was highest for AHA, which can be explained by that AHA contained more carboxyl-containing molecules, proteinaceous compounds and polysaccharides that were preferentially adsorbed by minerals. Phosphate showed a stronger inhibitory effect on MHA adsorption than on AHA adsorption, suggesting that AHA can more effectively replace phosphate adsorbed to sediments. Our findings show that the functional groups of organic compounds control not only their fractionation and burial but also their ability to replace phosphate in sediments. We propose a novel mechanism to explain the legacy effect of lake eutrophication. That is, as lakes shift from a macrophyte-dominated state to more eutrophic, algae-dominated state, increasing algae-derived organic compounds can promote the release of phosphate from sediments, forming a positive feedback loop that sustains internal phosphorus loading and hence lake eutrophication.


Assuntos
Lagos , Poluentes Químicos da Água , Adsorção , China , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Lagos/química , Fosfatos , Fósforo/análise , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 299: 118909, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35092730

RESUMO

In monomictic lakes, hypolimnetic anoxia is becoming severe in extent and duration over the past few decades. Understanding historical trends in hypolimnetic dissolved oxygen (DO) levels and the factors controlling them is crucial for effective protection and management of monomictic lakes everywhere, but the issue remains little studied in China. Here, our study elucidated the variation of hypolimnion DO and organic matter (OM) input in Lake Erhai (a typical monomictic lake in South-Western China) during the past 200 years, by using the geochemical profiles of elements (C, N, P, S, Mo, Ca, and Al) and aliphatic hydrocarbons in a dated sediment core. The values of element proxies (S concentrations, S/Al ratios, Mo enrichment factor, and total organic carbon/total P ratios) and pristane/phytane (Pr/Ph) ratios reflect relatively limited development of anoxia in the lake hypolimnion before 1990. Meanwhile, the n-alkane proxies (short-chain, middle-chain, and long-chain n-alkane abundances, n-C17/n-C16 alkane ratios, and Paq) indicate relatively scant inputs of OM from phytoplankton and relatively high inputs of OM from terrestrial plants or from submerged macrophytes. Taken together the results show that OM supplied in this period did not deteriorate hypolimnion DO in Lake Erhai. The element proxies and Pr/Ph ratios point to that the lake had experienced a pronounced intensification of hypolimnetic anoxia after 1990, and the n-alkane proxies indicate that the lake was susceptible to severe eutrophication and phytoplankton blooms in this period. The synchronous sharp variation implies the decay of massive phytoplankton OM had severely consumed oxygen in the lake hypolimnion. The large surface area/depth ratio in Lake Erhai is conducive for an overturn of the water column during wind disturbance, which allowed the water column stratification and relating effects (e.g., hypolimnetic anoxia) less vulnerable to some aspects of climate change.


Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Eutrofização , Sedimentos Geológicos , Humanos , Hipóxia , Fósforo/análise , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 277: 116720, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640814

RESUMO

Establishment of submerged macrophyte beds and application of chemical phosphorus inactivation are common lake restoration methods for reducing internal phosphorus loading. The two methods operate via different mechanisms and may potentially supplement each other, especially when internal phosphorous loading is continuously high. However, their combined effects have so far not been elucidated. Here, we investigated the combined impact of the submerged macrophyte Vallisneria denseserrulata and a lanthanum-modified bentonite (Phoslock®) on water quality in a 12-week mesocosm experiment. The combined treatment led to stronger improvement of water quality and a more pronounced reduction of porewater soluble reactive phosphorus than each of the two measures. In the combined treatment, total porewater soluble reactive phosphorus in the top 10 cm sediment layers decreased by 78% compared with the control group without Phoslock® and submerged macrophytes. Besides, in the upper 0-1 cm sediment layer, mobile phosphorus was transformed into recalcitrant forms (e.g. the proportion of HCl-P increased to 64%), while in the deeper layers, (hydr)oxides-bound phosphorus species increased 17-28%. Phoslock®, however, reduced the clonal growth of V. denseserrulata by 35% of biomass (dry weight) and 27% of plant density. Our study indicated that Phoslock® and submerged macrophytes may complement each other in the early stage of lake restoration following external nutrient loading reduction in eutrophic lakes, potentially accelerating the restoration process, especially in those lakes where the internal phosphorus loading is high.


Assuntos
Bentonita , Lagos , Eutrofização , Sedimentos Geológicos , Lantânio/análise , Fósforo/análise , Qualidade da Água
7.
Sci Total Environ ; 769: 144357, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33477050

RESUMO

Shallow lakes have a tendency to settle into turbid or clear-water states, the latter having lower concentrations of total phosphorus (TP). However, how P-cycling is affected by and perhaps contributes to maintaining the different states is not well understood, in part because quantifying the processes involved by traditional methods is difficult. To elucidate these processes, we conducted experiments using 32P-PO4 as a tracer on samples collected from the unrestored, unvegetated sections of Huizhou West Lake where turbid water prevails as well as the restored, clear-water, macrophyte-rich waters of the lake. We measured PO4 uptake rates, 32P-PO4 accumulation by various plankton size-fractions (picoplankton (0.2-2 µm), nanoplankton (2-20 µm) and microplankton (>20 µm)) as well as release rates of 32P-PO4 by labelled plankton. Our results revealed slow PO4 uptake in the turbid state due to low PO4 concentration, slow recycling of the high particulate P, and high levels of particulate 32P which may allow for continuous high growth and biomass of phytoplankton. In contrast, in the clear water state, the uptake of PO4 was rapid due to a higher PO4 concentration, the recycling rates of particulate 32P were high and the levels of particulate 32P were low, potentially constraining the phytoplankton growth. A greater proportion of particulate 32P was in the microplankton fraction in clear waters, suggesting that grazing by microplankton may play an important role in the rapid P recycling in clear-waters. Our results provide some evidence for a reinforcement of the turbid conditions (low recycling rate) when the lake is in a turbid state and vice versa when in the clear water state. The results add new knowledge to the understanding of P cycling in shallow lakes and illustrate the utility of using P-kinetics in contrasting states in plankton communities.


Assuntos
Lagos , Plâncton , Biomassa , Eutrofização , Fósforo , Fitoplâncton
8.
Ecol Appl ; 30(7): e02160, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32363772

RESUMO

In recent years, considerable efforts have been made to restore turbid, phytoplankton-dominated shallow lakes to a clear-water state with high coverage of submerged macrophytes. Various dynamic lake models with simplified physical representations of vertical gradients, such as PCLake, have been used to predict external nutrient load thresholds for such nonlinear regime shifts. However, recent observational studies have questioned the concept of regime shifts by emphasizing that gradual changes are more common than sudden shifts. We investigated if regime shifts would be more gradual if the models account for depth-dependent heterogeneity of the system by including the possibility of vertical gradients in the water column and sediment layers for the entire depth. Hence, bifurcation analysis was undertaken using the 1D hydrodynamic model GOTM, accounting for vertical gradients, coupled to the aquatic ecosystem model PCLake, which is implemented in the framework for aquatic biogeochemical modeling (FABM). First, the model was calibrated and validated against a comprehensive data set covering two consecutive 7-yr periods from Lake Hinge, a shallow, eutrophic Danish lake. The autocalibration program Auto-Calibration Python (ACPy) was applied to achieve a more comprehensive adjustment of model parameters. The model simulations showed excellent agreement with observed data for water temperature, total nitrogen, and nitrate and good agreement for ammonium, total phosphorus, phosphate, and chlorophyll a concentrations. Zooplankton and macrophyte coverage were adequately simulated for the purpose of this study, and in general the GOTM-FABM-PCLake model simulations performed well compared with other model studies. In contrast to previous model studies ignoring depth heterogeneity, our bifurcation analysis revealed that the spatial extent and depth limitation of macrophytes as well as phytoplankton chlorophyll-a responded more gradually over time to a reduction in the external phosphorus load, albeit some hysteresis effects still appeared. In a management perspective, our study emphasizes the need to include depth heterogeneity in the model structure to more correctly determine at which external nutrient load a given lake changes ecosystem state to a clear-water condition.


Assuntos
Ecossistema , Lagos , Clorofila A , Dinamarca , Eutrofização , Fósforo/análise , Fitoplâncton
9.
Sci Total Environ ; 705: 135958, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31838421

RESUMO

Increased nutrient loading has adverse effects on the growth of submerged macrophytes in eutrophic shallow lakes. Where growth of phytoplankton, epiphyton and filamentous algae is excessive, all may contribute to shading that limits macrophyte growth. However, when abundant, herbivorous snails may dampen this effect by reducing the biomass of epiphyton, and perhaps also of nuisance filamentous algae, both which have the potential to become more abundant in a future warmer world. We studied the effects of herbivorous snails (Radix swinhoei) on the biomass of phytoplankton, epiphyton and filamentous algae as well as the growth of the submerged macrophyte, Vallisneria denseserrulata, under contrasting nutrient loadings (low, nitrogen (N) 113 µg L-1·d-1 and phosphorus (P) 10 µg L-1·d-1; high, N 339 µg L-1·d-1 and P 30 µg L-1·d-1) in a 30 day outdoor mesocosm experiment, conducted on the shore of subtropical Lake Taihu, China. We found significant interactive effects of nutrient loading and snail presence on biomasses of epiphyton and filamentous algae and on the biomass and relative growth rate of submerged macrophytes. When snails were absent, the biomass of epiphyton and the biomass and coverage of filamentous algae all increased markedly, while the biomass, density and relative growth rate of V. denseserrulata decreased significantly with increased nutrient loading. When snails were present, biomasses of epiphyton, phytoplankton and filamentous algae were significantly reduced and growth of V. denseserrulata significantly increased under both high and low nutrient loading scenarios, and the effect was most pronounced in the nutrient-rich treatment. The present study suggests that in shallow aquatic ecosystems, herbivorous snails reduce the negative impact of nutrient loading on submerged macrophyte growth, by controlling both epiphyton and nuisance filamentous algae. How best to protect snails from fish predation in order to realize this potential under natural conditions is a matter that warrants further studies.


Assuntos
Ecossistema , Lagos , Animais , Biomassa , China , Eutrofização , Nitrogênio , Fósforo , Fitoplâncton
10.
Chemosphere ; 235: 297-307, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31260870

RESUMO

The rapid development and exploitation of the Yangtze River basin in order to ensure human food security and increase living space in recent decades has resulted in significant potential for degradation of water quality in the river and in hundreds of lakes. Understanding how lake environments have evolved to their present state under a variety of external influences is crucial for evaluating their current status and anticipating future scenarios of environmental changes. However, the lakes along the middle reaches of the Yangtze River (MRY) are as yet little studied. Here, we described the long-term anthropogenic environmental transformations of a small lake (Lake Taibai) in the MRY area, based on a detailed quantitative geochemical analysis of the aliphatic hydrocarbons, nutrients (N and P), biogenic silica (BSi), and major and trace elements present in a dated sediment core retrieved from the lake. Our data revealed that levels of short-chain n-alkanes, αß-hopanes and the trace elements arsenic (As) and cadmium (Cd) were all low for the entire record in sediments prior to ca. 1970, reflecting unpolluted natural state of the lake. Pronounced anthropogenic effects began to appear in sediments deposited in the subsequent years ca. 1970-1990, during which the levels of all these components were elevated, most likely driven by input of nitrogen (N) and phosphorus (P) containing chemical fertilizers, pesticides and diesel oil respectively. Since ca. 1990, changes of short-chain n-alkane levels in the sediment suggested the lake had undergone dramatic eutrophication in which existing anthropogenic stressors were exacerbated by technological advances that extended the use of chemical fertilizer into aquaculture. This pattern contrasted with an otherwise comparable lake in the lower Yangtze River basin, Lake Changdang, in which trace element and petroleum pollution were much more prominent due to dramatic urbanization and industrialization of the catchment.


Assuntos
Monitoramento Ambiental , Eutrofização , Fertilizantes/toxicidade , Sedimentos Geológicos/análise , Lagos/química , Qualidade da Água/normas , Aquicultura , China , Monitoramento Ambiental/métodos , Fertilizantes/análise , Humanos , Hidrocarbonetos/análise , Nitrogênio/análise , Fósforo/análise , Oligoelementos/análise , Urbanização , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 26(22): 22472-22484, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161541

RESUMO

During the past few decades, the Yangtze River basin has undergone massive anthropogenic change. In order to evaluate the impacts of human interventions on sediment n-alkanes of lakes across this region, the aliphatic hydrocarbon fractions of 19 surface sediment samples collected from lakes along the middle reaches of the Yangtze River (MYR) were analyzed using gas chromatography-mass spectrometry. The n-alkanes extracted from the sediments contained a homologous series from C15 to C34, with a notable predominance of odd carbon compounds except for sediments from the more intensively industrialized Lake Daye, in which > C21 n-alkanes showed no odd/even predominance, and carbon preference index (CPI) approached unity. Abundance values of middle-chain (C21, C23, and C25) and long-chain (C27, C29, C31, and C33) n-alkanes in Lake Daye were approximately 4 to 3 times greater than the average for other lakes, reaching 272.4 and 486.3 µg/g TOC, respectively, in the study. Short-chain n-alkanes (C15, C17, and C19) in the sediments varied in abundance from 10.0 to 76.2 µg/g TOC across the study and showed a moderate correlation with total phosphorus (TP) concentrations in the overlying water. The results indicated anthropogenic eutrophication enhanced the accumulation of short-chain n-alkanes in sediments because the primary producers in which they are synthesized are highly susceptible to nutrient forcing. Middle-chain n-alkane abundances were less affected by eutrophication and generally enriched in macrophyte lakes, while long-chain n-alkanes tend to be low in sediments from more eutrophic water. In the case of Lake Daye, direct discharges of petroleum products from heavy industry have introduced quantities of petroleum n-alkanes (> C21), far exceeding the amounts of biogenic input, and the sediment > C21 n-alkanes detected in this study showed typical characteristics of petroleum source. In other lakes, inputs of petroleum products from surface runoff of vehicle/traffic emissions associated with urbanization and economic growth contributed comparatively few n-alkanes to sediments, resulting in declines in CPI for > C21 n-alkanes, most obviously in Lakes Huanggai, Donghu, and Futou. Calculated CPI values suggest that a major proportion of the n-alkanes present in these lakes are derived from biogenic input. The results of this study provided evidences that n-alkane profiles of lake sediments respond sensitively to human-induced eutrophication and different sources of petroleum pollution.


Assuntos
Alcanos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Carbono/análise , China , Eutrofização , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Humanos , Hidrocarbonetos/análise , Lagos/química , Compostos Orgânicos/análise , Petróleo/análise , Fósforo/análise , Rios/química
12.
Environ Pollut ; 248: 36-47, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30771746

RESUMO

Applications of aluminium (Al) salt or lanthanum (La) modified bentonite (LMB) have become popular methodologies for immobilizing phosphorus (P) in eutrophic lakes. The presence of humic substances, has been shown to inhibit this form of treatment due to the complexation with La/Al. However, the effects of other dissolved organic matter (DOM), especially that derived from phytoplankton (the dominant source in eutrophic lakes) are unknown. In this study, the interaction with La/Al of Suwannee River Standard Humic Acid Standard II (SRHA) and algae-derived DOM (ADOM) were investigated and compared. Differed to SRHA which was dominated by polyphenol-like component (76.8%, C1-SRHA), majority in ADOM were protein-like substance, including 41.9% tryptophan-like component (C2-ADOM) and 21.0% tyrosine-like component (C3-ADOM). Two reactions of complexation and coprecipitation were observed between SRHA/ADOM and La/Al. Complexation dominated at low metal inputs less than 10 µM and coprecipitation was the main reaction at higher metal inputs. For ADOM, the tryptophan-like component (C2-ADOM) was the important component to react with metal. The reaction rate for C2-ADOM with La were about two-third of that for C1-SRHA, indicating that the influence of C2-ADOM was significant during the P immobilization by La/Al-based treatment in eutrophic lakes. The P removal data in the presence of ADOM confirmed the significant inhibition of ADOM. In addition, based on the composition of coprecipitates and relatively biodegradable character of tryptophan-like substances (C2-ADOM), the coprecipitation of ADOM was assumed to reduce the stability of precipitated P in eutrophic lakes. The release of P from the potential biodegradation of the coprecipitates and thus the possible decline of the performance of P immobilization by La/Al-based treatments is an important work in the future.


Assuntos
Alumínio/química , Bentonita/química , Eutrofização/fisiologia , Lagos/química , Lantânio/química , Fósforo/química , Rios/química , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Íons , Fitoplâncton , Espectrometria de Fluorescência/métodos
13.
Water Res ; 146: 88-97, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236468

RESUMO

Fish manipulation has been used to restore lakes in the temperate zone. Often strong short-term cascading effects have been obtained, but the long term-perspectives are less clear. Fish manipulation methods are far less advanced for warm lakes, and it is debatable whether it is, in fact, possible to create a trophic cascade in warm lakes due to the dominance and high densities of fast-reproducing omnivorous fish. However, removal of benthic feeding fish also reduce disturbance of the sediment, which not only affects the nutrient level but also the concentration of suspended organic and inorganic matter with enhanced water clarity and potentially better growth conditions for submerged macrophytes. We conducted a biomanipulation experiment in one of the basins in Chinese Huizhou West Lake that have remained highly turbid after extensive nutrient loading reduction. Another basin was used as control (control-treatment pairing design). Removal of a substantial amount of plankti-benthivorous fish was followed by planting of submerged macrophytes and stocking of piscivorous fish. We found strong and relatively long-lasting effects of the restoration initiative in the form of substantial improvements in water clarity and major reductions in nutrient concentrations, particularly total phosphorus, phytoplankton and turbidity, while only minor effects were detected for crustacean zooplankton grazers occurring in low densities before as well as after the restoration. Our results add importantly to the existing knowledge of restoration of warm lakes and are strongly relevant, not least in Asia where natural lakes frequently are used extensively for fish production, often involving massive stocking of benthivorous fish. With a growing economy and development of more efficient fish production systems, the interest in restoring lakes is increasing world-wide. We found convincing evidence that fish removal and piscivores stocking combined with transplantation of submerged macrophytes may have significant effects on water clarity in warm shallow lakes even if the zooplankton grazing potential remains low, the latter most likely as a result of high predation on the zooplankton.


Assuntos
Lagos , Zooplâncton , Animais , Fósforo , Fitoplâncton , Comportamento Predatório
14.
Water Res ; 144: 304-311, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071399

RESUMO

Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.


Assuntos
Daphnia/fisiologia , Ecossistema , Peixes/fisiologia , Plâncton/fisiologia , Animais , Biomassa , Clima , Cadeia Alimentar , Herbivoria , Lagos , Fósforo/metabolismo , Fitoplâncton/fisiologia , Comportamento Predatório , Temperatura , Zooplâncton/fisiologia
15.
Environ Sci Pollut Res Int ; 24(26): 21509-21516, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28803343

RESUMO

Increased phosphorus (P) export from sediments to the overlying water column is a significant factor driving the variation of phytoplankton in productivity and community structure in lakes. However, the lack of long-term instrumental data often impeded analyses attempting to associate dynamics of phytoplankton with variation of internal P loading. Here, elements and lipid biomarkers were analyzed in a sediment core from Lake Heihai, a small, deep, and ultraoligotrophic alpine lake in Haba Mountain, Yunnan Province, SW China. The data document incredible enrichment of element iron (Fe) in the sediment, whose concentrations are much higher than those of other common major elements including titanium (Ti), aluminum (Al), calcium (Ca), and magnesium (Mg). This finding, together with the abundance correlation between P and Fe (n = 30, R 2  = 0.783) suggested that P was probably retained in sediments through sorption with micro-layer of FeOOH at the sediment-water interface. The P/Ti ratios, P/Fe ratios, and P/total organic carbon (TOC) ratios all declined in the sediment since 1980, perhaps indicating increased P release from sediments to the overlying water column initiated by hypolimnion anoxia and sulfidic, which is presumably triggered by regional climate warming since the 1980s. The P-rich bottom water can be injected into photic zone during wind-driven mixing and overturn of the water column, although its frequency and intensity might decline due to stronger water column stratification in warming climate. In response, diatoms exhibited a rapid increase of productivity at this time, because diatoms have a storage vacuole and thereby nutrients such as P can be concentrated and used for cell division long after they are depleted in the bulk fluid. Elevated diatom biomass produced shading of light penetration, allowing for a low productivity for dinoflagellates. This study deepens our understanding of the impact of climate warming on lake systems and highlights the element biogeochemical cycle contributing to the variation of nutrients in the lake water column.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Aquecimento Global , Lagos/química , Lipídeos/análise , Fitoplâncton/metabolismo , China , Biomarcadores Ambientais , Fósforo/análise , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 24(5): 5012-5018, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000069

RESUMO

It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.


Assuntos
Carpas , Sedimentos Geológicos , Fitoplâncton/crescimento & desenvolvimento , Animais , Biomassa , China , Clorofila/análogos & derivados , Clorofila A , Cianobactérias , Diatomáceas , Eutrofização , Lagos , Luz , Fósforo/análise , Água
17.
Surg Endosc ; 30(9): 3684-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26659236

RESUMO

BACKGROUND: Gastroesophageal reflux disease (GERD) is a prevalent disease which severely impacts the quality of life of the patients. The surgical options are limited to such patients who are not satisfied with medical therapies. Magnetic sphincter augmentation (MSA) is a new antireflux surgical technique for treating GERD, which could physiologically reinforce the lower esophageal sphincter by magnetic force. Many clinical and animal studies have focused on this new therapy. The purpose of this work was to review the feasibility, efficacy and safety of MSA as a new treatment for GERD. METHODS: We performed a PubMed database search for the MSA and GERD-related studies between 2008 and September 22, 2015. One animal study, two case reports and fifteen clinical studies were identified in this review. RESULTS: The MSA device reinforces the lower esophageal sphincter to antireflux via magnetic force. The feasibility of this laparoscopic technique has been proved by the experimental and clinical studies. The clinical studies demonstrate that MSA treatment could effectively reduce the percent time of esophageal acid exposure (pH < 4) and improve the GERD health-related quality of life score. The operation time of MSA is shorter than that of the Nissen fundoplication, and the efficacy of MSA treatment is equal to that of fundoplication. The most frequent postoperative complication is dysphagia, and the majority of them could be self-resolved with conservative treatment. CONCLUSION: MSA (or LINX) devices provide an alternative surgical option for the patients who had failed in medical therapy. This review of the current literatures demonstrates that MSA is as effective as the medical and conventional surgical therapies. In the future, MSA will play a more important role in the treatment of GERD because of its unique advantage.


Assuntos
Esfíncter Esofágico Inferior/cirurgia , Refluxo Gastroesofágico/cirurgia , Magnetoterapia/instrumentação , Fundoplicatura/métodos , Refluxo Gastroesofágico/psicologia , Humanos , Laparoscopia/métodos , Qualidade de Vida , Resultado do Tratamento
18.
Environ Sci Pollut Res Int ; 22(6): 4418-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25304240

RESUMO

Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.


Assuntos
Lagos/química , Lagos/microbiologia , Luz , Nitrogênio/farmacologia , Fósforo/farmacologia , Fitoplâncton/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento , Análise de Variância , Biomassa , Clorofila/metabolismo , Clorofila A , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/efeitos dos fármacos , Alga Marinha/efeitos dos fármacos
19.
Planta Med ; 80(2-3): 171-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356905

RESUMO

Hepatitis C virus is a major cause of chronic liver disease worldwide. Xanthohumol, a prenylated flavonoid from hops, has various biological activities including an antiviral effect. It was previously characterized as a compound that inhibits bovine viral diarrhea virus, a surrogate model of hepatitis C virus. In the present work, xanthohumol was examined for its ability to inhibit hepatitis C virus replication in a cell culture system carrying replicating hepatitis C virus RNA replicon. 0.2 % DMSO and 500 units/mL interferon-alpha treatments were set as a negative and positive control, respectively. The inhibitory effect by xanthohumol was determined by the luciferase activity of the infected Huh7.5 cell lysates and the hepatitis C virus RNA levels in the culture. Xanthohumol at 3.53 µM significantly decreased the luciferase activity compared to the negative control (p < 0.01). Xanthohumol at 7.05 µM further decreased the luciferase activity compared to xanthohumol at 3.53 µM (p = 0.015). Xanthohumol at 7.05 µM or 14.11 µM achieved an inhibitory effect similar to that of interferon-alpha 2b (p > 0.05). Xanthohumol at 3.53 µM significantly reduced the hepatitis C virus RNA level compared to the negative control (p = 0.001). Although the results of xanthohumol at 7.05 µM had a higher variation, xanthohumol at the 7.05 µM and 14.11 µM decreased the hepatitis C virus RNA level to that achieved by interferon-alpha (p > 0.05). In conclusion, xanthohumol displays anti-hepatitis C virus activity in a cell culture system and may be potentially used as an alternative or complementary treatment against the hepatitis C virus.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Hepacivirus/efeitos dos fármacos , Humulus/química , Propiofenonas/farmacologia , Replicação Viral/efeitos dos fármacos , Células Cultivadas , Humanos
20.
Water Res ; 50: 135-46, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24370657

RESUMO

Benthic-pelagic coupling is a key factor in the dynamics of shallow lakes. A 12-week mesocosm experiment tested the hypothesis that deposit-feeding tubificid worms stimulate the growth of pelagic algae while filter-feeding bivalves promote the growth of benthic algae, using the deposit-feeding tubificid Limnodrilus hoffmeisteri and the filter-feeding bivalve Anodonta woodiana. A tube-microcosm experiment using a (32)P radiotracer tested for differential effects of tubificids and bivalves on the release of sediment phosphorus (P). In this experiment A. woodiana was replaced by Corbicula fluminea, a smaller bivalve from the same functional group whose size was more appropriate to the experimental tubes needed for the tracer study. The first experiment recorded greater nutrient concentrations in the overlying water, higher biomass of pelagic algae as measured by chlorophyll a (Chl a), lower light intensity at the sediment and lower biomass of benthic algae in the worm treatments than in the controls, while nutrients and Chl a of pelagic algae were lower and the light intensity and Chl a of benthic algae were higher in the bivalve treatments than in the controls. In the second experiment, (32)P activity in the overlying water was higher in both treatments than in the controls, but highest in the worm treatment indicating that both animals accelerated P release from the sediment, with the biggest effect associated with the presence of worms. Our study demonstrates that worms promote pelagic algal growth by enhancing the release of sediment nutrients, while bivalves, likely through their grazing on pelagic algae increasing available light levels, stimulate benthic algal growth despite enhanced P release from the sediment and thus aid the establishment of clear water states. The rehabilitation of native bivalve populations may therefore enhance the recovery of eutrophic shallow lakes.


Assuntos
Bivalves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Eutrofização , Sedimentos Geológicos/parasitologia , Helmintos/fisiologia , Lagos/parasitologia , Animais , China , Clorofila/análise , Clorofila A , Comportamento Alimentar , Filtração , Geografia , Luz , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Isótopos de Fósforo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA