RESUMO
Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information is still under debate. Previous findings suggested that dyslexic participants showed atypical neural entrainment to slow and/or fast temporal modulations in speech, which might affect prosodic/syllabic and phonemic processing respectively. However, the large methodological variations across these studies do not allow us to draw clear conclusions on the nature of the entrainment deficit in dyslexia. Using magnetoencephalography, we measured neural entrainment to nonspeech and speech in both groups. We first aimed to conceptually replicate previous studies on auditory entrainment in dyslexia, using the same measurement methods as in previous studies, and also using new measurement methods (cross-correlation analyses) to better characterize the synchronization between stimulus and brain response. We failed to observe any of the significant group differences that had previously been reported in delta, theta and gamma frequency bands, whether using speech or nonspeech stimuli. However, when analyzing amplitude cross-correlations between noise stimuli and brain responses, we found that control participants showed larger responses than dyslexic participants in the delta range in the right hemisphere and in the gamma range in the left hemisphere. Overall, our results are weakly consistent with the hypothesis that dyslexic individuals show an atypical entrainment to temporal modulations. Our attempt at replicating previously published results highlights the multiple weaknesses of this research area, particularly low statistical power due to small sample size, and the lack of methodological standards inducing considerable heterogeneity of measurement and analysis methods across studies.
Assuntos
Dislexia , Percepção da Fala , Estimulação Acústica , Encéfalo , Humanos , Magnetoencefalografia , FalaRESUMO
Cortical oscillations phase-align to the quasi-rhythmic structure of the speech envelope. This speech-brain entrainment has been reported in two frequency bands, that is both in the theta band (4-8 Hz) and in the delta band (<4 Hz). However, it is not clear if these two phenomena reflect passive synchronization of the auditory cortex to the acoustics of the speech input, or if they reflect higher processes involved in actively parsing speech information. Here, we report two magnetoencephalography experiments in which we contrasted cortical entrainment to natural speech compared to qualitative different control conditions (Experiment 1: amplitude-modulated white-noise; Experiment 2: spectrally rotated speech). We computed the coherence between the oscillatory brain activity and the envelope of the auditory stimuli. At the sensor-level, we observed increased coherence for the delta and the theta band for all conditions in bilateral brain regions. However, only in the delta band (but not theta), speech entrainment was stronger than either of the control auditory inputs. Source reconstruction in the delta band showed that speech, compared to the control conditions, elicited larger coherence in the right superior temporal and left inferior frontal regions. In the theta band, no differential effects were observed for the speech compared to the control conditions. These results suggest that whereas theta entrainment mainly reflects perceptual processing of the auditory signal, delta entrainment involves additional higher-order computations in the service of language processing.
Assuntos
Córtex Auditivo/fisiologia , Lobo Frontal/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information at either syllabic- or phonemic-rates is still under debate. In addition, whereas neuroanatomical alterations in auditory regions have been documented in dyslexic readers, whether and how these structural anomalies are linked to auditory sampling and reading deficits remains poorly understood. In this study, we measured auditory neural synchronization at different frequencies corresponding to relevant phonological spectral components of speech in children and adults with and without dyslexia, using magnetoencephalography. Furthermore, structural MRI was used to estimate cortical thickness of the auditory cortex of participants. Dyslexics showed atypical brain synchronization at both syllabic (slow) and phonemic (fast) rates. Interestingly, while a left hemispheric asymmetry in cortical thickness was functionally related to a stronger left hemispheric lateralization of neural synchronization to stimuli presented at the phonemic rate in skilled readers, the same anatomical index in dyslexics was related to a stronger right hemispheric dominance for neural synchronization to syllabic-rate auditory stimuli. These data suggest that the acoustic sampling deficit in development dyslexia might be linked to an atypical specialization of the auditory cortex to both low and high frequency amplitude modulations.