Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32365348

RESUMO

Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.


Assuntos
Comportamento Animal/fisiologia , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Orexinas/metabolismo , RNA Nucleolar Pequeno/genética , Sono/fisiologia , Animais , Modelos Animais de Doenças , Comportamento Alimentar , Região Hipotalâmica Lateral/fisiopatologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Camundongos , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/fisiopatologia
2.
Sci Rep ; 9(1): 15462, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664081

RESUMO

Torpor is a peculiar mammalian behaviour, characterized by the active reduction of metabolic rate, followed by a drop in body temperature. To enter torpor, the activation of all thermogenic organs that could potentially defend body temperature must be prevented. Most of these organs, such as the brown adipose tissue, are controlled by the key thermoregulatory region of the Raphe Pallidus (RPa). Currently, it is not known which brain areas mediate the entrance into torpor. To identify these areas, the expression of the early gene c-Fos at torpor onset was assessed in different brain regions in mice injected with a retrograde tracer (Cholera Toxin subunit b, CTb) into the RPa region. The results show a network of hypothalamic neurons that are specifically activated at torpor onset and a direct torpor-specific projection from the Dorsomedial Hypothalamus to the RPa that could putatively mediate the suppression of thermogenesis during torpor.


Assuntos
Jejum , Vias Neurais/fisiologia , Torpor , Animais , Regulação da Temperatura Corporal/fisiologia , Hipotálamo/fisiologia , Camundongos , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA