Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (176)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34779429

RESUMO

Assessing the availability of dietary micro-minerals is a major challenge in mineral nutrition of fish species. The present article aims to describe a systematic approach combining different methodologies to assess the availability of zinc (Zn) in Atlantic salmon (Salmo salar). Considering that several Zn chemical species can be present in an Atlantic salmon feed, it was hypothesised that Zn availability is influenced by the Zn chemical species present in the feed. Thus, in this study, the first protocol is about how to extract the different Zn chemical species from the feed and to analyze them by a size exclusion chromatography-inductively coupled plasma mass spectroscopy (SEC-ICP-MS) method. Subsequently, an in vitro method was developed to evaluate the solubility of dietary Zn in Atlantic salmon feeds. The third protocol describes the method to study the impact of changing Zn chemical species composition on the uptake of Zn in a fish intestinal epithelial model using a rainbow trout gut cell line (RTgutGC). Together, the findings from the in vitro methods were compared with an in vivo study examining the apparent availability of inorganic and organic sources of Zn supplemented to Atlantic salmon feeds. The results showed that several Zn chemical species can be found in feeds and the efficiency of an organic Zn source depends very much on the amino acid ligand used to chelate Zn. The findings of the in vitro methods had less correlation with that outcome of the in vivo study. Nevertheless, in vitro protocols described in this article provided crucial information regarding Zn availability and its assessment in fish feeds.


Assuntos
Oncorhynchus mykiss , Salmo salar , Ração Animal , Animais , Suplementos Nutricionais , Minerais , Zinco
2.
Artigo em Inglês | MEDLINE | ID: mdl-31461683

RESUMO

Previously we showed that, for optimum growth, micronutrient levels should be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when they are fed diets formulated with low levels of marine ingredients. In the present study, the impact of graded levels (100, 200, 400%) of a micronutrient package (NP) on vertebral deformities and bone gene expression were determined in diploid and triploid salmon parr fed low marine diets. The prevalence of radiologically detectable spinal deformities decreased with increasing micronutrient supplementation in both ploidy. On average, triploids had a higher incidence of spinal deformity than diploids within a given diet. Micronutrient supplementation particularly reduced prevalence of fusion deformities in diploids and compression and reduced spacing deformities in triploids. Prevalence of affected vertebrae within each spinal region (cranial, caudal, tail and tail fin) varied significantly between diet and ploidy, and there was interaction. Prevalence of deformities was greatest in the caudal region of triploids and the impact of graded micronutrient supplementation in reducing deformities also greatest in triploids. Diet affected vertebral morphology with length:height (L:H) ratio generally increasing with level of micronutrient supplementation in both ploidy with no difference between ploidy. Increased dietary micronutrients level in diploid salmon increased the vertebral expression of several bone biomarker genes including bone morphogenetic protein 2 (bmp2), osteocalcin (ostcn), alkaline phosphatase (alp), matrix metallopeptidase 13 (mmp13), osteopontin (opn) and insulin-like growth factor 1 receptor (igf1r). In contrast, although some genes showed similar trends in triploids, vertebral gene expression was not significantly affected by dietary micronutrients level. The study confirmed earlier indications that dietary micronutrient levels should be increased in salmon fed diets with low marine ingredients and that there are differences in nutritional requirements between ploidies.


Assuntos
Ração Animal , Diploide , Salmo salar/crescimento & desenvolvimento , Triploidia , Animais , Biomarcadores , Suplementos Nutricionais , Micronutrientes , Óleos de Plantas , Proteínas de Plantas , Salmo salar/anormalidades , Vitaminas
3.
Artigo em Inglês | MEDLINE | ID: mdl-30367964

RESUMO

The effects of low marine ingredient diets supplemented with graded levels (L1, L2, L3) of a micronutrient package (NP) on growth and metabolic responses were studied in diploid and triploid salmon parr. Diploids fed L2 showed significantly improved growth and reduced liver, hepatic steatosis, and viscerosomatic indices, while fish fed L3 showed suppressed growth rate 14 weeks post feeding. In contrast, dietary NP level had no effect on triploid performance. Whole body mineral composition, with exception of copper, did not differ between diet or ploidy. Whole fish total AAs and N-metabolites showed no variation by diet or ploidy. Free circulating AAs and white muscle N-metabolites were higher in triploids than diploids, while branch-chained amino acids were higher in diploids than triploids. Diploids had higher whole body α-tocopherol and hepatic vitamins K1 and K2 than triploids. Increased tissue B-vitamins for niacin and whole-body folate with dietary NP supplementation were observed in diploids but not triploids, while whole body riboflavin was higher in diploids than triploids. Hepatic transcriptome profiles showed that diploids fed diet L2 was more similar to that observed in triploids fed diet L3. In particular, sterol biosynthesis pathways were down-regulated, whereas cytochrome P450 metabolism was up-regulated. One­carbon metabolism was also affected by increasing levels of supplementation in both ploidies. Collectively, results suggested that, for optimised growth and liver function, micronutrient levels be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when fed low marine ingredient diets. The study also suggested differences in nutritional requirements between ploidy.


Assuntos
Dieta/veterinária , Diploide , Fígado/metabolismo , Micronutrientes/administração & dosagem , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Triploidia , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/fisiologia , Aquicultura/economia , Redução de Custos , Dieta/efeitos adversos , Dieta/economia , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Óleos de Peixe/economia , Produtos Pesqueiros/análise , Produtos Pesqueiros/economia , Proteínas de Peixes/análise , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/citologia , Fígado/crescimento & desenvolvimento , Micronutrientes/análise , Músculo Esquelético/química , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Necessidades Nutricionais , Valor Nutritivo , Óleos de Plantas/administração & dosagem , Óleos de Plantas/efeitos adversos , Óleos de Plantas/química , Óleos de Plantas/economia , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas de Vegetais Comestíveis/efeitos adversos , Proteínas de Vegetais Comestíveis/análise , Proteínas de Vegetais Comestíveis/economia , Salmo salar/fisiologia , Escócia , Alimentos Marinhos/análise , Aumento de Peso
4.
PeerJ ; 4: e2688, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843721

RESUMO

The shift from marine to plant-based ingredients in fish feeds affects the dietary concentrations and bioavailability of micronutrients, amino acids and lipids and consequently warrants a re-evaluation of dietary nutrient recommendations. In the present study, an Atlantic salmon diet high in plant ingredients was supplemented with graded levels of nutrient premix (NP), containing selected amino acids, taurine, cholesterol, vitamins and minerals. This article presents the results on the antioxidant nutrients vitamin C, E and selenium (Se), and effects on tissue redox status. The feed ingredients appeared to contain sufficient levels of vitamin E and Se to cover the requirements to prevent clinical deficiency symptoms. The body levels of α-tocopherol (TOH) in parr and that of Se in parr and post-smolt showed a linear relationship with dietary concentration, while α-TOH in post-smolt seemed to be saturable with a breakpoint near 140 mg kg-1. Ascorbic acid (Asc) concentration in the basal feed was below the expected minimum requirement, but the experimental period was probably too short for the fish to develop visible deficiency symptoms. Asc was saturable in both parr and post-smolt whole body at dietary concentrations of 190 and 63-89 mg kg-1, respectively. Maximum whole body Asc concentration was approximately 40 mg kg-1 in parr and 14 mg kg-1 in post-smolt. Retention ranged from 41 to 10% in parr and from -206 to 12% in post-smolt with increasing NP supplementation. This indicates that the post-smolts had an extraordinarily high consumption of Asc. Analyses of glutathione (GSH) and glutathione disulphide (GSSG) concentrations and the calculated GSH based redox potentials in liver and muscle tissue, indicated only minor effects of diets on redox regulation. However, the post-smolt were more oxidized than the parr. This was supported by the high consumption of Asc and high expression of gpx1 and gpx3 in liver. Based on the present trials, the recommendations for supplementation of vitamin C and E in diets for Atlantic salmon are similar to current practices, e.g. 150 mg kg-1 of α-TOH and 190 mg kg-1 Asc which was the saturating concentration in parr. Higher concentrations than what would prevent clinical deficiency symptoms are necessary to protect fish against incidents of oxidative stress and to improve immune and stress responses. There were no indications that the Se requirement exceeded the current recommendation of 0.3 mg kg-1.

5.
PeerJ ; 4: e2493, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703849

RESUMO

Aiming to re-evaluate current recommendations for nutrient supplementations when Atlantic salmon are fed diets based on plant ingredients, two regression experiments, with parr and post-smolt, were conducted. A control diet was included to evaluate if ingredients supplied sufficient nutrients without any added nutrient package (NP). The nutrient package consisted of vitamins B, C, E, minerals, cholesterol, methionine, taurine and histidine. This paper focus on B-vitamins. In parr, growth, health and welfare parameters responded on NP additions, but this was not observed in the seawater stage. During three months of feeding, parr tripled their weight. Parr given diets added the NP above NRC (2011) showed improved protein retention, and reduced liver and viscera indices. Post-smolt fed the same diets during five months showed a doubling of weight, but did not respond to the variation in NP to the same extent as parr. Significant regressions were obtained in body compartments for several of the B-vitamins in the premix. Whole body biotin concentration was unaffected by micronutrient premix level, and mRNA expression of the enzymes dependent of biotin showed only weak increases with increased biotin. Muscle thiamine plateaued at a diet level similar to NRC (2011) recommendation in freshwater, and showed stable values independent on premix addition in seawater. The mRNA expression of the enzyme G6PDH (glucose-6-phosphate dehydrogenase) is sensitive to thiamine availability; results did not indicate any need to add thiamine above levels recommended for fish in general. Niacin showed a steady increase in whole body concentrations as feed niacin increased. Muscle riboflavin peaked at a diet level of 12.4 mg kg-1. Sufficient riboflavin is important to avoid e.g., development of cataract. Cataract was not registered to be any problem, neither in fresh- nor in seawater. Cobalamin (B 12) in muscle and liver was saturated at 0.17 mg kg-1 diet. Muscle pyridoxine showed a dose-dependent level in muscle, and peaked around 10 mg kg -1 diet. White muscle ASAT (asparagine amino transferase) activity steadily increased, with indications of stable values when dietary pyridoxine was around 10-16 mg kg -1 diet. Pantothenic acid increased in gill tissue up to a level of 5.5 mg kg -1 soft gill tissue; at a dietary level of 22 mg kg-1. Improved performance, and coverage of metabolic need for niacin was at a dietary level of 66 mg kg -1, riboflavin 10-12 mg kg-1, pyridoxine 10 mg kg-1 and panthotenic acid 22 mg kg-1. Based on these results, recommended B-vitamin supplementation in plant based diets for Atlantic salmon should be adjusted.

6.
Aquat Toxicol ; 175: 171-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060237

RESUMO

Several studies have reported on the interaction between vitamin A (VA) and aryl hydrocarbon receptor (AhR)-binding toxicants, including poly-aromatic hydrocarbons (PAHs). In aquaculture, the use of plant oils in novel aquafeeds can increase PAH levels while simultaneously lowering natural VA background levels, causing the need to supplement plant oil-based feeds with synthetic VA. To study dietary VA-PAH interactions, Atlantic salmon (initial weight 195±0.15g) were fed four identical plant-based diets that were supplemented with PAHs (100 and 10mgkg(-1) benzo[a]pyrene (BaP) and phenanthrene (Phe), respectively) or VA (retinyl acetate 8721IUkg(-1)) separately or combined for 2.5 months in a 2×2 factorial design, with triplicate net-pens per diet. Dietary PAH significantly reduced hepatic VA storage, and VA-enriched diets restored hepatic VA. There was a significant PAH-VA interaction effect on hepatic BaP, but not Phe, accumulation, with reduced hepatic BaP concentrations in fish fed VA+PAH compared to fish fed PAH alone. Concurrently, PAH and VA significantly interacted in their effects on CYP1A phase I biotransformation as observed from increased ethoxyresorufin-O-deethylase (EROD) activity, increased CYP1A protein concentration, and elevated transcription (cyp1a1 gene expression) in fish fed PAH+VA compared to PAH alone. Dietary VA supplementation alone had no significant effect on CYP1A phase I biotransformation. Metabolomic assessment showed that dietary VA caused a restoration of metabolic intermediates involved in energy metabolism that were affected by dietary PAH. Moreover, a PAH-induced growth inhibition was partially ameliorated by dietary VA supplementation. In conclusion, dietary VA interacted with PAH toxicity on the level of CYP1A-mediated detoxification, hepatic PAH accumulation, energy allocation, and growth.


Assuntos
Dieta , Suplementos Nutricionais , Hidrocarbonetos Aromáticos/toxicidade , Fígado/efeitos dos fármacos , Salmo salar/fisiologia , Vitamina A/análogos & derivados , Animais , Aquicultura , Biotransformação/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Diterpenos , Regulação da Expressão Gênica/efeitos dos fármacos , Ésteres de Retinil , Vitamina A/administração & dosagem , Poluentes Químicos da Água/toxicidade
7.
J Nutr Biochem ; 26(6): 585-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776459

RESUMO

Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming.


Assuntos
Ração Animal , Ácido Araquidônico/metabolismo , Ceramidas/metabolismo , Fígado/metabolismo , Oxilipinas/metabolismo , Salmo salar , Óleo de Soja/administração & dosagem , Alanina Transaminase/sangue , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Ácidos Araquidônicos/metabolismo , Proteínas de Ligação ao Cálcio , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Ocidental , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Endocanabinoides/metabolismo , Ácidos Graxos/sangue , Óleos de Peixe/administração & dosagem , Glicerídeos/metabolismo , Insulina/sangue , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Alcamidas Poli-Insaturadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Alimentos Marinhos , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo
8.
Br J Nutr ; 109(8): 1508-17, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22883314

RESUMO

Dietary intake of linoleic acid (LA) has increased dramatically during the twentieth century and is associated with a greater prevalence of obesity. Vegetable oils are recognised as suitable alternatives to fish oil (FO) in feed for Atlantic salmon (Salmo salar L.) but introduce high amounts of LA in the salmon fillet. The effect on fish consumers of such a replacement remains to be elucidated. Here, we investigate the effect of excessive dietary LA from soyabean oil (SO) on endocannabinoid levels in Atlantic salmon and mice, and study the metabolic effects in mice when SO replaces FO in feed for Atlantic salmon. Atlantic salmon were fed FO and SO for 6 months, and the salmon fillet was used to produce feed for mice. Male C57BL/6J mice were fed diets of 35% of energy as fat based on FO- and SO-enriched salmon for 16 weeks. We found that replacing FO with SO in feed for Atlantic salmon increased LA, arachidonic acid (AA), decreased EPA and DHA, elevated the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and increased TAG accumulation in the salmon liver. In mice, the SO salmon diet increased LA and AA and decreased EPA and DHA in the liver and erythrocyte phospholipids, and elevated 2-AG and AEA associated with increased feed efficiency, weight gain and adipose tissue inflammation compared with mice fed the FO salmon diet. In conclusion, excessive dietary LA elevates endocannabinoids in the liver of salmon and mice, and increases weight gain and counteracts the anti-inflammatory properties of EPA and DHA in mice.


Assuntos
Ácidos Araquidônicos/metabolismo , Gorduras na Dieta/metabolismo , Endocanabinoides/metabolismo , Inflamação/etiologia , Ácido Linoleico/metabolismo , Tecido Adiposo/citologia , Análise de Variância , Ração Animal , Animais , Gorduras na Dieta/efeitos adversos , Óleos de Peixe , Inflamação/fisiopatologia , Ácido Linoleico/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmo salar/metabolismo , Óleo de Soja , Aumento de Peso
9.
Biochim Biophys Acta ; 1831(2): 291-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085008

RESUMO

Reduced mitochondrial fatty acid (FA) ß-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA ß-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA ß-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA ß-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA ß-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.


Assuntos
Suplementos Nutricionais , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA