Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Opin Virol ; 52: 182-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952266

RESUMO

The alarming rise in antimicrobial resistance coupled with a lack of innovation in antibiotics has renewed interest in the development of alternative therapies to combat bacterial infections. Despite phage therapy demonstrating success in various individual cases, a comprehensive and unequivocal demonstration of the therapeutic potential of phages remains to be shown. The co-evolution of phages and their bacterial hosts resulted in several inherent limitations for the use of natural phages as therapeutics such as restricted host range, moderate antibacterial efficacy, and frequent emergence of phage-resistance. However, these constraints can be overcome by leveraging recent advances in synthetic biology and genetic engineering to provide phages with additional therapeutic capabilities, improved safety profiles, and adaptable host ranges. Here, we examine different ways phages can be engineered to deliver heterologous therapeutic payloads to enhance their antibacterial efficacy and discuss their versatile applicability to combat bacterial pathogens.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Bactérias/genética , Infecções Bacterianas/terapia , Bacteriófagos/genética , Humanos
2.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291298

RESUMO

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Células 3T3-L1 , Células A549 , Abscesso/tratamento farmacológico , Abscesso/microbiologia , Animais , Antibacterianos/química , Farmacorresistência Bacteriana , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/uso terapêutico
3.
Analyst ; 144(19): 5755-5765, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31433410

RESUMO

The bacterial toxin botulinum neurotoxin A (BoNT/A) is not only an extremely toxic substance but also a potent pharmaceutical compound that is used in a wide spectrum of neurological disorders and cosmetic applications. The quantification of the toxin is extremely challenging due to its extraordinary high physiological potency and is further complicated by the toxin's three key functionalities that are necessary for its activity: receptor binding, internalization-translocation, and catalytic activity. So far, the industrial standard to measure the active toxin has been the mouse bioassay (MBA) that is considered today as outdated due to ethical issues. Therefore, recent introductions of cell-based assays were highly anticipated; their impact however remains limited due to their labor-intensive implementation. This report describes a new in vitro approach that combines a nanosensor based on the use of nerve cell-mimicking nanoreactors (NMN) with microfluidic technology. The nanosensor was able to measure all three key functionalities, and therefore suitable to quantify the amount of physiologically active BoNT/A. The integration of such a sensor in a microfluidic device allowed the detection and quantification of BoNT/A amounts in a much shorter time than the MBA (<10 h vs. 2-4 days). Lastly, the system was also able to reliably quantify physiologically active BoNT/A within a simple final pharmaceutical formulation. This complete in vitro testing system and its unique combination of a highly sensitive nanosensor and microfluidic technology represent a significant ethical advancement over in vivo measures and a possible alternative to cell-based in vitro detection methods.


Assuntos
Materiais Biomiméticos , Toxinas Botulínicas Tipo A/análise , Células Imobilizadas , Dispositivos Lab-On-A-Chip , Nanoestruturas , Neurônios , Animais , Técnicas Biossensoriais , Medicamentos de Ervas Chinesas/química , Técnicas In Vitro/métodos , Lipossomos/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ligação Proteica , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , Suínos
4.
Viruses ; 10(8)2018 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126174

RESUMO

Staphylococcus aureus is an important pathogen and biofilm former. Biofilms cause problems in clinics and food production and are highly recalcitrant to antibiotics and sanitizers. Bacteriophage endolysins kill bacteria by degrading their cell wall and are therefore deemed promising antimicrobials and anti-biofilm agents. Depolymerases targeting polysaccharides in the extracellular matrix have been suggested as parts of a multi-enzyme approach to eradicate biofilms. The efficacy of endolysins and depolymerases against S. aureus biofilms in static models has been demonstrated. However, there is a lack of studies evaluating their activity against biofilms grown under more realistic conditions. Here, we investigated the efficacy of the endolysin LysK and the poly-N-acetylglucosamine depolymerase DA7 against staphylococcal biofilms in static and dynamic (flow cell-based) models. LysK showed activity against multiple S. aureus strains, and both LysK and DA7 removed static and dynamic biofilms from polystyrene and glass surfaces at low micromolar and nanomolar concentrations, respectively. When combined, the enzymes acted synergistically, as demonstrated by crystal violet staining of static biofilms, significantly reducing viable cell counts compared to individual enzyme treatment in the dynamic model, and confocal laser scanning microscopy. Overall, our results suggest that LysK and DA7 are potent anti-biofilm agents, alone and in combination.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Endopeptidases/farmacologia , Glicosídeo Hidrolases/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Bacteriófagos/química , Biofilmes/crescimento & desenvolvimento , Combinação de Medicamentos , Sinergismo Farmacológico , Endopeptidases/isolamento & purificação , Vidro/química , Glicosídeo Hidrolases/isolamento & purificação , Testes de Sensibilidade Microbiana , Poliestirenos/química , Reologia , Staphylococcus aureus/crescimento & desenvolvimento
5.
ACS Nano ; 12(4): 3385-3396, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29553709

RESUMO

Adaptable hydrogel networks with reversible connectivity have emerged as a promising platform for biomedical applications. Synthetic copolymers and low-molecular-weight gelators (LMWG) have been shown to form reversible hydrogels through self-assembly of the molecules driven by self-complementary hydrophobic interaction and hydrogen bonding. Here, inspired by the adhesive proteins secreted by mussels, we found that simply adding natural polyphenols, such as epigallocatechin gallate (EGCG) to amyloid fibrils present in the nematic phase, successfully drives the formation of hydrogels through self-assembly of the hybrid supramolecules. The hydrogels show birefringence under polarized light, indicating that the nematic orientation is preserved in the gel phase. Gel stiffness enhances with incubation time and with an increase in molecular ratios between polyphenol and fibrils, fibril concentration, and pH. The hydrogels are shear thinning and thermostable from 25 to 90 °C without any phase transition. The integrity of the trihydroxyl groups, the gallate ester moiety in EGCG, and the hydrophobicity of the polyphenols govern the interactions with the amyloid fibrils and thus the properties of the ensuing hydrogels. The EGCG-binding amyloid fibrils, produced from lysozyme and peptidoglycans, retain the main binding functions of the enzyme, inducing bacterial agglomeration and immobilization on both Gram-positive and Gram-negative bacteria. Furthermore, the antibacterial mechanism of the lysozyme amyloid fibril hydrogels is initiated by membrane disintegration. In combination with the lack of cytotoxicity to human colonic epithelial cells demonstrated for these hybrid supramolecules, a potential role in combating multidrug-resistant bacteria in biomedical applications is suggested, such as in targeting diseases related to infection of the small intestine.


Assuntos
Amiloide/metabolismo , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrogéis/farmacologia , Polifenóis/farmacologia , Amiloide/química , Antibacterianos/síntese química , Antibacterianos/química , Linhagem Celular , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polifenóis/química
6.
J Antimicrob Chemother ; 70(5): 1453-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25630640

RESUMO

OBJECTIVES: In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. METHODS: PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. RESULTS: Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. CONCLUSIONS: Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites.


Assuntos
Antibacterianos/uso terapêutico , Bacteriófagos/enzimologia , Terapia Biológica/métodos , Endopeptidases/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Parede Celular/efeitos dos fármacos , Modelos Animais de Doenças , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Hidrólise , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peptidoglicano/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Infecções Estafilocócicas/microbiologia , Análise de Sobrevida , Resultado do Tratamento
7.
Appl Microbiol Biotechnol ; 93(2): 633-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21720825

RESUMO

The ability of the bacteriophage-encoded peptidoglycan hydrolases (endolysins) to destroy Gram-positive bacteria from without makes these enzymes promising antimicrobials. Recombinant endolysins from Listeria monocytogenes phages have been shown to rapidly lyse and kill the pathogen in all environments. To determine optimum conditions regarding application of recombinant Listeria phage endolysins in food or production equipments, properties of different Listeria endolysins were studied. Optimum NaCl concentration for the amidase HPL511 was 200 nM and 300 mM for the peptidases HPL118, HPL500, and HPLP35. Unlike most other peptidoglycan hydrolases, all four enzymes exhibited highest activity at elevated pH values at around pH 8-9. Lytic activity was abolished by EDTA and could be restored by supplementation with various divalent metal cations, indicating their role in catalytic function. While substitution of the native Zn(2+) by Ca(2+) or Mn(2+) was most effective in case of HPL118, HPL500, and HPLP35, supplementation with Co(2+) and Mn(2+) resulted in an approximately 5-fold increase in HPL511 activity. Interestingly, the glutamate peptidases feature a conserved SxHxxGxAxD zinc-binding motif, which is not present in the amidases, although they also require centrally located divalent metals for activity. The endolysins HPL118, HPL511, and HPLP35 revealed a surprisingly high thermostability, with up to 35% activity remaining after 30 min incubation at 90°C. The available data suggest that denaturation at elevated temperatures is reversible and may be followed by rapid refolding into a functional state.


Assuntos
Bacteriófagos/enzimologia , Cátions Bivalentes/metabolismo , Ativadores de Enzimas/metabolismo , Listeria monocytogenes/virologia , Metais/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Ácido Edético/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Temperatura , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Curr Pharm Biotechnol ; 11(1): 58-68, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20214608

RESUMO

The use of phage or phage products in food production has recently become an option for the food industry as a novel method for biocontrol of unwanted pathogens, enhancing the safety of especially fresh and ready-to-eat food products. While it can be expected that many more phage products currently under development might become available in the future, several questions may be raised concerning the use of such products, regarding both immediate and long-term efficacy, consumer safety, and application methods. The available evidence suggests that, with a few caveats, safety concerns have been satisfactorily addressed. Answers concerning efficacy are more complex, depending on particular applications or the target pathogens. To ensure long-term efficacy beyond what can be tested on a laboratory scale, food safety concepts employing phages will have to be well-thought out and may involve rotation schemes as used with bacterial starter cultures, the use of phage cocktails, or application of phages combined with other antimicrobials. This review will discuss these issues on the basis of the available literature as well as providing an outlook on the potential of phages in future applications.


Assuntos
Infecções Bacterianas/prevenção & controle , Bacteriófagos , Terapia Biológica/tendências , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Infecções Bacterianas/virologia , Doenças Transmitidas por Alimentos/virologia , Humanos
9.
Microb Biotechnol ; 1(3): 247-57, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-21261844

RESUMO

The increasing occurrence of antibiotic-resistant pathogens is of growing concern, and must be counteracted by alternative antimicrobial treatments. Bacteriophages represent the natural enemies of bacteria. However, the strong immune response following application of phages and rapid clearance from the blood stream are hurdles which need to be overcome. Towards our goal to render phages less immunogenic and prolong blood circulation time, we have chemically modified intact bacteriophages by conjugation of the non-immunogenic polymer monomethoxy-polyethylene glycol (mPEG) to virus proteins. As a proof of concept, we have used two different polyvalent and strictly virulent phages of the Myoviridae, representing typical candidates for therapeutical approaches: Felix-O1 (infects Salmonella) and A511 (infects Listeria). Loss of phage infectivity after PEGylation was found to be proportional to the degree of modification, and could be conveniently controlled by adjusting the PEG concentration. When injected into naïve mice, PEGylated phages showed a strong increase in circulation half-life, whereas challenge of immunized mice did not reveal a significant difference. Our results suggest that the prolonged half-life is due to decreased susceptibility to innate immunity as well as avoidance of cellular defence mechanisms. PEGylated viruses elicited significantly reduced levels of T-helper type 1-associated cytokine release (IFN-γ and IL-6), in both naïve and immunized mice. This is the first study demonstrating that PEGylation can increases survival of infective phage by delaying immune responses, and indicates that this approach can increase efficacy of bacteriophage therapy.


Assuntos
Terapia Biológica/métodos , Listeriose/terapia , Myoviridae/química , Myoviridae/imunologia , Infecções por Salmonella/terapia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Circulação Sanguínea , Modelos Animais de Doenças , Humanos , Listeria/fisiologia , Listeria/virologia , Listeriose/imunologia , Listeriose/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Myoviridae/fisiologia , Polietilenoglicóis/química , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Salmonella typhimurium/virologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA