Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Rep ; 9(2): e14714, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463885

RESUMO

Restricting dietary sodium promotes sodium appetite in rats. Prolonged sodium restriction increases plasma potassium (pK), and elevated pK is largely responsible for a concurrent increase in aldosterone, which helps promote sodium appetite. In addition to increasing aldosterone, we hypothesized that elevated potassium directly influences the brain to promote sodium appetite. To test this, we restricted dietary potassium in sodium-deprived rats. Potassium restriction reduced pK and blunted the increase in aldosterone caused by sodium deprivation, but did not prevent sodium appetite or the activation of aldosterone-sensitive HSD2 neurons. Conversely, supplementing potassium in sodium-deprived rats increased pK and aldosterone, but did not increase sodium appetite or the activation of HSD2 neurons relative to potassium restriction. Supplementing potassium without sodium deprivation did not significantly increase aldosterone and HSD2 neuronal activation and only modestly increased saline intake. Overall, restricting dietary sodium activated the HSD2 neurons and promoted sodium appetite across a wide range of pK and aldosterone, and saline consumption inactivated the HSD2 neurons despite persistent hyperaldosteronism. In conclusion, elevated potassium is important for increasing aldosterone, but it is neither necessary nor sufficient for activating HSD2 neurons and increasing sodium appetite.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aldosterona/metabolismo , Apetite/fisiologia , Dieta Hipossódica/métodos , Vias Neurais/fisiologia , Neurônios/fisiologia , Potássio/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Sódio/deficiência , Sódio/metabolismo
2.
Brain Res ; 1645: 12-4, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944298

RESUMO

The 1970s saw the introduction of new technologies for tracing axons both anterogradely and retrogradely. These methods allowed us to visualize fine, unmyelinated pathways for the first time, such as the hypothalamic pathways that control the autonomic nervous system. As a result, we were able to identify the paraventricular nucleus and lateral hypothalamus as the key sites that provide direct inputs to the autonomic preganglionic neurons in the medulla and spinal cord. These findings revolutionized our understanding of hypothalamic control of the autonomic nervous system.


Assuntos
Sistema Nervoso Autônomo/anatomia & histologia , Hipotálamo/anatomia & histologia , Neuroanatomia/história , Animais , História do Século XX , Humanos , Bulbo/anatomia & histologia , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico/história , Neuroanatomia/métodos , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/anatomia & histologia , Medula Espinal/anatomia & histologia
3.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1141-52, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24049115

RESUMO

The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sódio/farmacologia , Órgão Subfornical/citologia , Animais , Área Postrema/citologia , Canais Epiteliais de Sódio/genética , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA