Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 24(12): 3097-106, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23843439

RESUMO

The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.


Assuntos
Junções Comunicantes/fisiologia , Neocórtex/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Animais , Conexinas/metabolismo , Neocórtex/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento
2.
Curr Biol ; 22(3): 253-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22264606

RESUMO

Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.


Assuntos
Rede Nervosa/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Animais , Colforsina/análogos & derivados , Colforsina/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Rede Nervosa/efeitos dos fármacos , Neurônios Retinianos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA