Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 144: 2421-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615490

RESUMO

Chlorinated aromatics undergo surface-mediated reactions with metal oxides to form Environmentally Persistent Free Radicals (EPFRs) which can further react to produce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Previous work using laboratory-made fly ash surrogates composed of transition metal oxides deposited on silica powder has confirmed their ability to mimic fly ash in the production of PCDD/Fs. However, little is known about the propensity of aluminas and aluminosilicates, other components of fly ash, to form PCDD/Fs. A fly ash sample containing both alumina and mullite, an aluminosilicate, was tested for PCDD/F formation ability and compared to PCDD/F yields from the thermal degradation of 2-monochlorophenol (2-MCP) precursor over γ-alumina, α-alumina, and mullite. A packed-bed flow reactor was used to investigate the thermal degradation of 2-MCP over the various catalysts at 200-600 °C. Fly ash gave similar PCDD/F yields to surrogates made with similar transition metal content. γ-alumina, which is thermodynamically unfavorable, was very catalytically active and gave low PCDD/F yields despite a high destruction of 2-MCP. Mullite and α-alumina, the thermodynamically favorable form of alumina, yielded higher concentrations of dioxins and products with a higher degree of chlorine substitution than γ-alumina. The data suggest that certain aluminas and aluminosilicates, commonly found in fly ash, are active catalytic surfaces in the formation of PCDD/Fs in the post-flame cool zones of combustion systems and should be considered as additional catalytic surfaces active in the process.


Assuntos
Poluentes Atmosféricos/análise , Óxido de Alumínio/química , Benzofuranos/análise , Clorofenóis/química , Cinza de Carvão/análise , Dioxinas/análise , Silicatos de Alumínio/química , Dibenzofuranos Policlorados , Monitoramento Ambiental
2.
Environ Sci Technol ; 49(14): 8769-76, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26115348

RESUMO

The ″in situ burning" of trapped crude oil on the surface of Gulf waters during the 2010 Deepwater Horizon (DWH) oil spill released numerous pollutants, including combustion-generated particulate matter (PM). Limited information is available on the respiratory impact of inhaled in situ burned oil sail particulate matter (OSPM). Here we utilized PM collected from in situ burn plumes of the DWH oil spill to study the acute effects of exposure to OSPM on pulmonary health. OSPM caused dose-and time-dependent cytotoxicity and generated reactive oxygen species and superoxide radicals in vitro. Additionally, mice exposed to OSPM exhibited significant decreases in body weight gain, systemic oxidative stress in the form of increased serum 8-isoprostane (8-IP) levels, and airway inflammation in the form of increased macrophages and eosinophils in bronchoalveolar lavage fluid. Further, in a mouse model of allergic asthma, OSPM caused increased T helper 2 cells (Th2), peribronchiolar inflammation, and increased airway mucus production. These findings demonstrate that acute exposure to OSPM results in pulmonary inflammation and alteration of innate/adaptive immune responses in mice and highlight potential respiratory effects associated with cleaning up an oil spill.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Exposição Ambiental/análise , Material Particulado/toxicidade , Poluição por Petróleo , Petróleo/toxicidade , Pneumonia/imunologia , Pneumonia/patologia , Animais , Asma/sangue , Asma/complicações , Asma/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Camundongos Endogâmicos BALB C , Muco/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/sangue , Pneumonia/complicações , Superóxidos/metabolismo , Fatores de Tempo
3.
Environ Sci Technol ; 46(11): 5971-8, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22548284

RESUMO

The effect of low temperature thermal treatment on soils from a former Superfund wood-treating site contaminated with pentachlorophenol (PCP) and the environmentally persistent free radical (EPFR), pentachlorophenoxyl, was determined. The pentachlorophenoxyl EPFRs' and the PCP molecules' chemical behavior were simultaneously monitored at temperatures ranging from 25 to 300 °C via electron paramagnetic resonance (EPR) spectroscopy and GC-MS analysis, respectively. Two types of thermal treatment were employed: a closed heating (oxygen-starved condition) where the soil was heated under vacuum and an open heating system (oxygen-rich conditions), where the soil was heated in ambient air. EPR analyses for closed heating indicated the EPFR concentration was 2-12 × 10(18) spins/g of soil, with a g-factor and line width (ΔHp-p) of 2.00311-2.00323 and 4.190-5.472 G, respectively. EPR analyses for the open heating soils revealed a slightly broader and weaker radical signal, with a concentration of 1-10 × 10(18) spins/g of soil, g-factor of 2.00327-2.00341, and ΔHp-p of 5.209-6.721 G. This suggested the open heating resulted in the formation of a more oxygen-centered structure of the pentachlorophenoxyl radical or additional, similar radicals. The EPFR concentration peaked at 10 × 10(18) spins/g of soil at 100 °C for open heating and 12 × 10(18) spins/g at 75 °C for closed heating. The half-lives of the EPFRs were 2-24 days at room temperature in ambient air. These results suggest low temperature treatment of soils contaminated with PCP can convert the PCP to potentially more toxic pentachlorophenoxyl EPFRs, which may persist in the environment long enough for human exposure.


Assuntos
Temperatura Baixa , Recuperação e Remediação Ambiental , Radicais Livres/química , Pentaclorofenol/química , Poluentes do Solo/química , Solo/química , Espectroscopia de Ressonância de Spin Eletrônica , Meia-Vida , Calefação , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA