Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570089

RESUMO

In this study, the synthesis of tungsten carbides in a copper matrix by spark plasma sintering (SPS) is conducted and the microstructure formation mechanisms of the composite materials are investigated. The reaction mixtures were prepared by the high-energy mechanical milling (MM) of W, C and Cu powders. The influence of the MM time and SPS temperature on the tungsten carbide synthesis in an inert copper matrix was analyzed. It was demonstrated that the milling duration is a critical factor for creating the direct contacts between the W and C reactants and increasing the reactive transformation degree. A WC-W2C-Cu composite was fabricated from the W-C-3Cu powder mixture milled for 10 min and subjected to SPS at a temperature of 980 °C for 5 min. The formation of unconventional microstructures with Cu-rich regions is related to inter-particle melting during SPS. The WC-W2C-Cu composite showed a promising combination of mechanical and functional properties: a hardness of 300 HV, an electrical conductivity of 24% of the International Annealed Copper Standard, a residual porosity of less than 5%, a coefficient of friction in pair with a WC-6Co counterpart of 0.46, and a specific wear rate of the material of 0.52 × 10-5 mm3 N-1 m-1.

2.
Nutrients ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631133

RESUMO

This study presents findings on the biological action of an integrated supplement containing the following components involved in osteogenesis and mineralization: vitamin D and silicon in the bioavailable and soluble form. A hypothesis that these components potentiate one another's action and make calcium absorption by the body more efficient was tested. Biological tests of the effect of vitamin D and silicon chelates on bone fracture healing and bone turnover were conducted using ICR mice and albino Wistar rats. Radiographic and biochemical studies show that the supplement simultaneously containing silicon chelates and vitamin D stimulates bone tissue regeneration upon mechanical defects and accelerates differentiation of osteogenic cells, regeneration of spongy and compact bones, and restoration of bone structure due to activation of osteoblast performance. Bone structure restoration was accompanied by less damage to skeletal bones, apparently due to better absorption of calcium from food. The studied supplement has a similar effect when used to manage physiologically induced decalcification, thus holding potential for the treatment of osteomalacia during pregnancy or occupational diseases (e.g., for managing bone decalcification in astronauts).


Assuntos
Consolidação da Fratura , Vitamina D , Animais , Remodelação Óssea , Cálcio , Cálcio da Dieta , Quelantes , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Ratos , Silício/farmacologia , Vitamina D/farmacologia , Vitamina D/fisiologia , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA