Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Microbiol ; 61(11): 953-966, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019370

RESUMO

Establishing slash pine plantations is the primary method for restoring sandification land in the Houtian area of South China. However, the microbial variation pattern with increasing stand age remains unclear. In this study, we investigated microbial community structure and function in bare sandy land and four stand age gradients, exploring ecological processes that determine their assembly. We did not observe a significant increase in the absolute abundance of bacteria or fungi with stand age. Bacterial communities were dominated by Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria; the relative abundance of Chloroflexi significantly declined while Proteobacteria and Acidobacteria significantly increased with stand age. Fungal communities showed succession at the genus level, with Pisolithus most abundant in soils of younger stands (1- and 6-year-old). Turnover of fungal communities was primarily driven by stochastic processes; both deterministic and stochastic processes influenced the assembly of bacterial communities, with the relative importance of stochastic processes gradually increasing with stand age. Bacterial and fungal communities showed the strongest correlation with the diameter at breast height, followed by soil available phosphorus and water content. Notably, there was a significant increase in the relative abundance of functional groups involved in nitrogen fixation and uptake as stand age increased. Overall, this study highlights the important effects of slash pine stand age on microbial communities in sandy lands and suggests attention to the nitrogen and phosphorus requirements of slash pine plantations in the later stages of sandy management.


Assuntos
Microbiota , Pinus , Pinus/microbiologia , Areia , Microbiologia do Solo , Solo/química , Bactérias , China , Fósforo
2.
Environ Monit Assess ; 189(3): 116, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28220441

RESUMO

The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.


Assuntos
Bactérias/classificação , Citocromo P-450 CYP4A/genética , Microbiologia do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Genes Bacterianos , Petróleo , Filogenia , Tibet
3.
J Biotechnol ; 226: 54-5, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26988394

RESUMO

Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment.


Assuntos
Acinetobacter/genética , Acinetobacter/isolamento & purificação , Temperatura Baixa , Ecossistema , Genoma Bacteriano , Petróleo/metabolismo , Sequência de Bases , Biodegradação Ambiental , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA