Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 349: 126850, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35167903

RESUMO

To enhance the degradation of urea in reclaimed water for producing ultrapure water (UPW), thermally modified biochar (TBC) was prepared by secondary pyrolysis using spent coffee biochar with the function as an activator of peroxymonosulfate (PMS). Results showed that 94.4% of urea can be degraded effectively by the TBC-PMS system at the dosage of 0.4 g/L TBC and 2 g/L PMS under neutral and weak acid conditions. Moreover, urea removal mainly depended on the free radical pathway (SO4• - and OH•), especially OH•. The inorganic anions of TBC increased via secondary pyrolysis, especially carbonate and phosphate, resulting in higher electrical conductance (EC) value than the original biochar. It was conducive to activating PMS. As well, C-O, -OH worked as an active site in the TBC-PMS system, providing electrons and activating PMS. This work provides a novel strategy for UPW production using TBC-PMS system.


Assuntos
Café , Água , Carvão Vegetal , Peróxidos/química , Ureia
2.
Chemosphere ; 288(Pt 1): 132459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619254

RESUMO

The demand for ultrapure water (UPW) in the semiconductor industry has increased in recent years, while the idea to use reclaimed water instead of tap water for UPW production has also attracted more attention. However, since urea concentration in reclaimed water is higher than that in tap water, UPW production has not been efficient. To resolve this problem, this study aims to develop a new spent coffee grounds based biochar (SCG-BC)/persulfate catalytic system as a pretreatment unit. The objective is to enhance urea removal from reclaimed water so that UPW production is more effective. In this study, the biochar used was prepared from spent coffee grounds with detailed characterization. Results strongly suggested that the urea removed by SCG-BC/persulfate catalytic system was very encouraging (up to 73%). The best possible dosages for SCG-BC and persulfate for urea removal were 0.2 and 2.0 g L-1, respectively. Furthermore, this system could remove urea effectively in a wide range of pH (3-10). Moreover, the characterizations of SCG-BC (graphite C, defective edges and functional groups, i.e. -OH, CO, carboxyl C-O) helped to activate persulfate in the catalytic process. OH• and SO4• - were all involved in this process, while the SO4• - was the main radical for urea degradation.


Assuntos
Café , Poluentes Químicos da Água , Carvão Vegetal , Ureia , Água , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 343: 126062, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34601025

RESUMO

This study evaluated the performance of spent coffee biochar (SCBC)/granular activated carbon (GAC) activating peroxymonosulfate (PMS) and peroxydisulfate (PDS) for urea degradation in reclaimed water used for ultrapure water production. Results showed that catalyst and oxidant wielded a great influence on urea removal. Of them, the GAC-PMS system could completely remove urea at the least oxidant (1 g/L) and catalyst dosage (0.2 g/L). GAC activating PMS mainly depended on graphite C structure and minor oxygen functional groups. However, the amounts of urea removed by 600BC-PMS and 900BC-PMS were 57% and 70%, respectively. In the PDS system, the urea removal through GAC-PDS could reach 90%, which mainly depends on the graphite C structure of GAC. Using the same conditions, the urea removal of 900BC-PDS was similar to GAC-PDS, so it has some potential as an alternative to commercial GAC.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Café , Peróxidos , Ureia , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA