Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453063

RESUMO

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Imidazóis , Animais , Suplementos Nutricionais/análise , Dieta , NF-kappa B , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Azóis/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Estresse Oxidativo , Apoptose , Carpas/metabolismo
2.
Cancer Med ; 7(8): 3848-3861, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29956500

RESUMO

The major histocompatibility complex (MHC) is most closely associated with nasopharyngeal carcinoma (NPC), but the complexity of its genome structure has proven challenging for the discovery of causal MHC loci or genes. We conducted a targeted MHC sequencing in 40 Cantonese NPC patients followed by a two-stage replication in 1065 NPC cases and 2137 controls of Southern Chinese descendent. Quantitative RT-PCR analysis (qRT-PCR) was used to detect gene expression status in 108 NPC and 43 noncancerous nasopharyngeal (NP) samples. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) were used to assess the transcription factor binding site. We discovered that a novel SNP rs117565607_A at TRIM26 displayed the strongest association (OR = 1.909, Pcombined = 2.750 × 10-19 ). We also observed that TRIM26 was significantly downregulated in NPC tissue samples with genotype AA/AT than TT. Immunohistochemistry (IHC) test also found the TRIM26 protein expression in NPC tissue samples with the genotype AA/AT was lower than TT. According to computational prediction, rs117565607 locus was a binding site for the transcription factor Yin Yang 1 (YY1). We observed that the luciferase activity of YY1 which is binding to the A allele of rs117565607 was suppressed. ChIP data showed that YY1 was binding with T not A allele. Significance analysis of microarray suggested that TRIM26 downregulation was related to low immune response in NPC. We have identified a novel gene TRIM26 and a novel SNP rs117565607_A associated with NPC risk by regulating transcriptional process and established a new functional link between TRIM26 downregulation and low immune response in NPC.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Imunomodulação/genética , Mutação , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/imunologia , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Carcinoma Nasofaríngeo/patologia , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA