Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Cir Bras ; 38: e383923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851784

RESUMO

PURPOSE: To evaluate the effects of the experimental subcutaneous Walker-256 tumor and L-glutamine supplementation, an antioxidant, on the glomerular morphology of rats. METHODS: Twenty Wistar rats were distributed into four groups (n = 5): control (C); control treated with 2% L-glutamine (CG); rats with Walker-256 tumor (WT); and rats with Walker-256 tumor treated with 2% L-glutamine (WTG). Renal histological samples were submitted to periodic acid-Schiff and Masson's Trichrome staining to analyze glomerular density, morphometry of glomerular components and glomerulosclerosis; and to immunohistochemistry for fibroblast growth factor-2 (FGF-2). RESULTS: WT showed 50% reduction in body mass gain and cachexia index > 10%, while WTG demonstrated reduction in cachexia (p < 0.05). WT revealed reduction of glomerular density, increase in the glomerular tuft area, mesangial area, matrix in the glomerular tuft, decrease in the urinary space and synechia, and consequently higher glomerulosclerosis (p < 0.05). L-glutamine supplementation in the WTG improved glomerular density, and reduced glomerular tuft area, urinary space, mesangial area, and glomerulosclerosis compared to WT(p < 0.05). WT showed higher collagen area and FGF-2 expression compared to C (p < 0.05). WTG presented lower collagen fibers and FGF-2 expression compared to WT (p < 0.05). CONCLUSIONS: L-glutamine supplementation reduced cachexia and was beneficial for glomerular morphology of the rats, as well as it reduced kidney damage and improved the remaining glomeruli morphology.


Assuntos
Glutamina , Neoplasias , Ratos , Animais , Ratos Wistar , Glutamina/farmacologia , Caquexia/metabolismo , Caquexia/patologia , Fator 2 de Crescimento de Fibroblastos , Suplementos Nutricionais , Colágeno
2.
Acta cir. bras ; 38: e383923, 2023. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1513538

RESUMO

Purpose: To evaluate the effects of the experimental subcutaneous Walker-256 tumor and L-glutamine supplementation, an antioxidant, on the glomerular morphology of rats. Methods: Twenty Wistar rats were distributed into four groups (n = 5): control (C); control treated with 2% L-glutamine (CG); rats with Walker-256 tumor (WT); and rats with Walker-256 tumor treated with 2% L-glutamine (WTG). Renal histological samples were submitted to periodic acid-Schiff and Masson's Trichrome staining to analyze glomerular density, morphometry of glomerular components and glomerulosclerosis; and to immunohistochemistry for fibroblast growth factor-2 (FGF-2). Results: WT showed 50% reduction in body mass gain and cachexia index > 10%, while WTG demonstrated reduction in cachexia (p < 0.05). WT revealed reduction of glomerular density, increase in the glomerular tuft area, mesangial area, matrix in the glomerular tuft, decrease in the urinary space and synechia, and consequently higher glomerulosclerosis (p < 0.05). L-glutamine supplementation in the WTG improved glomerular density, and reduced glomerular tuft area, urinary space, mesangial area, and glomerulosclerosis compared to WT(p < 0.05). WT showed higher collagen area and FGF-2 expression compared to C (p < 0.05). WTG presented lower collagen fibers and FGF-2 expression compared to WT (p < 0.05). Conclusions: L-glutamine supplementation reduced cachexia and was beneficial for glomerular morphology of the rats, as well as it reduced kidney damage and improved the remaining glomeruli morphology.


Assuntos
Animais , Ratos , Carcinoma 256 de Walker , Ratos Wistar , Glutamina , Glomérulos Renais , Antioxidantes
3.
Artigo em Inglês | MEDLINE | ID: mdl-30915148

RESUMO

BACKGROUND: Libidibia ferrea (L. ferrea) is found throughout the northeastern region of Brazil, where it has been used in folk medicine with beneficial effects on many inflammatory disorders. PURPOSE: This study investigated the phytochemical composition of the crude extract and fractions of L. ferrea fruit and evaluated its anti-inflammatory and antinociceptive activities in vivo and effect on cell viability in vitro. METHODS: Characterization of polyphenols present in crude extract (CE), hydroalcoholic fractions of 20-80% ethanol (CE20, CE40, CE60, and CE80), aqueous fraction (AqF), and ethyl acetate (EAF) fractions of L. ferrea fruit was performed by chromatographic analysis. Anti-inflammatory activity was evaluated by using a carrageenan-induced peritonitis model submitted to a leukocyte migration assay and myeloperoxidase activity (MPO) analysis. Total glutathione and malondialdehyde (MDA) levels were assessed to evaluate the oxidative stress level. Antinociceptive activity was evaluated by acetic acid-induced abdominal writhing and hot plate test. In vitro cell viability was determined by using MTT assay in a mouse embryonic fibroblast cell line (3T3 cells). RESULTS: Chromatography revealed the presence of ellagic acid content in EAF (3.06), CE (2.96), and CE40 (2.89). Gallic acid was found in EAF (12.03), CE 20 (4.43), and CE (3.99). L. ferrea crude extract and all fractions significantly reduced leukocyte migration and MPO activity (p<0.001). L. ferrea antioxidant effect was observed through high levels of total glutathione and reduction of MDA levels (p<0.001). Acetic acid-induced nociception was significantly inhibited after administration of L. ferrea crude extract and all fractions (p<0.001). Crude extract and all fractions significantly increased the viability of the 3T3 cell line (p<0.05). CONCLUSIONS: The appropriate extraction procedure preserves the chemical components of L. ferrea fruit, such as gallic acid and ellargic acid. Crude extract and fractions of L. ferrea fruit exhibited anti-inflammatory, antioxidant, antinociceptive activities in vivo and enhanced cell viability in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA