Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1200: 339583, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35256132

RESUMO

Bioluminescence, that is the emission of light in living organisms, has been extensively explored and applied for diverse bioanalytical applications, spanning from molecular imaging to biosensing. The unprecedented technological evolution of portable light detectors opened new possibilities to implement bioluminescence detection into miniaturized devices. We are witnessing a number of applications, including DNA sequencing, reporter gene assays, DNA amplification for point-of care and point-of need analyses relying on BL. Several photon detectors are currently available for measuring low light emission, such as photomultiplier tubes (PMT), charge-coupled devices (CCD), complementary metal oxide semiconductors (CMOS), single photon avalanche diodes (SPADs), silicon photomultipliers (SiPMs) and smartphone-integrated CMOS. Each technology has pros and cons and several issues, such as temperature dependence of the instrumental specific noise, the power supply, imaging capability and ease of integration, should be considered in the selection of the most appropriate detector for the selected BL application. These issues will be critically discussed from the perspective of the analytical chemist together with relevant examples from the literature with the goal of helping the reader in the selection and use of the most suitable detector for the selected application and to introduce non familiar readers into this exciting field.


Assuntos
Fótons , Semicondutores , Smartphone
2.
Anal Chem ; 93(20): 7388-7393, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33973781

RESUMO

The availability of portable analytical devices for on-site monitoring and rapid detection of analytes of forensic, environmental, and clinical interest is vital. We report the development of a portable device for the detection of biochemiluminescence relying on silicon photomultiplier (SiPM) technology, called LuminoSiPM, which includes a 3D printed sample holder that can be adapted for both liquid samples and paper-based biosensing. We performed a comparison of analytical performance in terms of detectability with a benchtop luminometer, a portable cooled charge-coupled device (CCD sensor), and smartphone-integrated complementary metal oxide semiconductor (CMOS) sensors. As model systems, we used two luciferase/luciferin systems emitting at different wavelengths using purified protein solutions: the green-emitting P. pyralis mutant Ppy-GR-TS (λmax 550 nm) and the blue-emitting NanoLuc (λmax 460 nm). A limit of detection of 9 femtomoles was obtained for NanoLuc luciferase, about 2 and 3 orders of magnitude lower than that obtained with the portable CCD camera and with the smartphone, respectively. A proof-of-principle forensic application of LuminoSiPM is provided, exploiting an origami chemiluminescent paper-based sensor for acetylcholinesterase inhibitors, showing high potential for this portable low-cost device for on-site applications with adequate sensitivity for detecting low light intensities in critical fields.


Assuntos
Técnicas Biossensoriais , Luminescência , Luz , Luciferases , Smartphone
3.
Anal Bioanal Chem ; 411(19): 4937-4949, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972468

RESUMO

Cell-based assays utilizing reporter gene technology have been widely exploited for biosensing, as they provide useful information about the bioavailability and cell toxicity of target analytes. The long assay time due to gene transcription and translation is one of the main drawbacks of cell biosensors. We report the development of two yeast biosensors stably expressing human estrogen receptors α and ß and employing NanoLuc as the reporter protein to upgrade the widely used yeast estrogen screening (YES) assays. A viability control strain was also developed based on a chimeric green-emitting luciferase, PLG2, expressed for the first time in Saccharomycescerevisiae. Thanks to their brightness, NanoLuc and PLG2 provided excellent sensitivity, enabling the implementation of these biosensors into low-cost smartphone-based devices. The developed biosensors had a rapid (1 h) response and reported on (anti)estrogenic activity via human estrogen receptors α and ß as well as general sample toxicity. Under optimized conditions, we obtained LODs of 7.1 ± 0.4 nM and 0.38 ± 0.08 nM for E2 with nanoYESα and nanoYESß, respectively. As a proof of concept, we analyzed real samples from plants showing significant estrogenic activity or known to contain significant amounts of phytoestrogens. Graphical abstract.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Medições Luminescentes/métodos , Nanotecnologia , Saccharomyces cerevisiae/metabolismo , Smartphone , Genes Reporter , Limite de Detecção , Luciferases/genética , Medicago sativa/química , Extratos Vegetais/química , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Glycine max/química , Poluentes Químicos da Água/análise
4.
Anal Bioanal Chem ; 408(30): 8859-8868, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27853830

RESUMO

The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.


Assuntos
Anti-Inflamatórios/farmacologia , Técnicas Biossensoriais/instrumentação , Luciferases/genética , Medições Luminescentes/instrumentação , Extratos Vegetais/farmacologia , Smartphone/instrumentação , Anti-Inflamatórios/química , Desenho de Equipamento , Genes Reporter , Engenharia Genética , Células HEK293 , Humanos , Limite de Detecção , Luciferases/metabolismo , Extratos Vegetais/química , Reprodutibilidade dos Testes , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA