Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 3(11): eaao1193, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29134198

RESUMO

Mammalian cells produce hundreds of dynamically regulated lipid species that are actively turned over and trafficked to produce functional membranes. These lipid repertoires are susceptible to perturbations from dietary sources, with potentially profound physiological consequences. However, neither the lipid repertoires of various cellular membranes, their modulation by dietary fats, nor their effects on cellular phenotypes have been widely explored. We report that differentiation of human mesenchymal stem cells (MSCs) into osteoblasts or adipocytes results in extensive remodeling of the plasma membrane (PM), producing cell-specific membrane compositions and biophysical properties. The distinct features of osteoblast PMs enabled rational engineering of membrane phenotypes to modulate differentiation in MSCs. Specifically, supplementation with docosahexaenoic acid (DHA), a lipid component characteristic of osteoblast membranes, induced broad lipidomic remodeling in MSCs that reproduced compositional and structural aspects of the osteoblastic PM phenotype. The PM changes induced by DHA supplementation potentiated osteogenic differentiation of MSCs concurrent with enhanced Akt activation at the PM. These observations prompt a model wherein the DHA-induced lipidome leads to more stable membrane microdomains, which serve to increase Akt activity and thereby enhance osteogenic differentiation. More broadly, our investigations suggest a general mechanism by which dietary fats affect cellular physiology through remodeling of membrane lipidomes, biophysical properties, and signaling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Osteogênese/efeitos dos fármacos , Células da Medula Óssea/citologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Ácidos Docosa-Hexaenoicos/farmacologia , Humanos , Lipídeos/análise , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Análise de Componente Principal , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas por Ionização por Electrospray
2.
Planta Med ; 82(18): 1532-1539, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27574896

RESUMO

In perspective of reducing the mortality of cancer, there is a high interest in compounds which act on multiple cellular targets and therefore prevent the appearance of cancer resistances. Saponins and α-hederin, an oleanane-type saponin, induce cancer cell death through different pathways, including apoptosis and membrane permeabilization. Unfortunately, the mechanism by which cell death is induced is unknown. We hypothesized that the activity of α-hederin mainly depends on its interaction with membrane cholesterol and therefore investigated the cholesterol and saponin-structure dependency of apoptosis and membrane permeabilization in two malignant monocytic cell lines. Apoptotic cell death and membrane permeabilization were significantly reduced in cholesterol-depleted cells. Permeabilization further depended upon the osidic side chain of α-hederin and led to extracellular calcium influx and nuclear fragmentation, with only the latter being susceptible to caspase inhibitors. Membrane order, measured by laurdan generalized polarization imaging, was neither reduced by α-hederin nor its aglycone hederagenin suggesting that their activity was not related to membrane cholesterol extraction. However, a radical change in morphology, including the disappearance of pseudopodes was observed upon incubation with α-hederin. Our results suggest that the different activities of α-hederin mainly depend on its interaction with membrane cholesterol and consequent pore formation.


Assuntos
Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Cálcio/metabolismo , Colesterol/química , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Saponinas/química , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA