Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Toxicol Rep ; 9: 1920-1928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518449

RESUMO

Background: The focus on traditional and complementary medicine for supplementation and treatment of diseases is high. Aspalathus linearis commonly known as Rooibos showed several beneficial effects, this led to the standardized production of a pharmaceutical grade green rooibos extract (Afriplex TM GRT) with enhanced polyphenolic content. The aim of this study was to assess toxicity of Afriplex TM GRT in HepG2/C3A cells and Sprague Dawley rats. Methods: Afriplex GRT TM (0.1, 1, 10, 100, or 1000 µg/mL) in DMSO was added to the media to the final 0.01% DMSO for treatment of HepG2/C3A for 1, 24 and 48 hrs followed by MTT and ATP assays. Sprague Dawley rats were grouped to Control, Afriplex TM GRT treated (10, 100 and 300 mg/kg); and acute (24hrs tetrachloromethane (CCl 4) injected hepatotoxicity control). Serum biochemistry, histology and Western blot analysis on liver were performed. Results: Afriplex TM GRT significantly reduced cell viability at 100 and 1000µg/mL after 48 hrs. Acute CCl 4 treatment significantly increased serum alanine aminotransferase in rats. The highest extract treatment of 300 mg/kg significantly elevated aspartate amino transferase. There was severe macro vesicular in the CCl 4 group whereas mild to moderate micro vesicular steatosis was seen in the 300 mg/kg Afriplex TM GRT treated group. Highest extract treatment significantly reduced NFkB expression on Western blot analysis. Conclusion: The beneficial effects of pharmaceutical grade Afriplex GRT TM are concentration and dosage based. Afriplex GRT TM exerts its beneficial effects via NFkB as demonstrated by the dose dependent reduction of NFkB on Western blot analysis. More work need to be done to explore the exact mechanism that occurs in the NFkB pathway.

2.
PLoS One ; 16(5): e0251069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983968

RESUMO

Oral therapeutics used to treat type 2 diabetes and cardiovascular disease often fail to prevent the progression of disease and their comorbidities. Rooibos (Aspalathus linearis), an endemic South African plant used as an herbal tea, has demonstrated positive effects on glycemia and hypercholesterolemia. However, the treatment efficacy of rooibos extract in combination with conventional hypoglycemic and hypolipidemic medications on blood glucose and lipid profiles has not been established. This study aimed to investigate the effects of combining an aspalathin-rich green rooibos extract (Afriplex GRT™) with pioglitazone and atorvastatin, on blood glucose and lipid levels in obese diabetic (db/db) mice. Six-week-old male db/db mice and their nondiabetic lean littermate controls (db+) were divided into 8 experimental groups (n = 6/group). Db/db mice were treated daily either with pioglitazone (25 mg/kg), atorvastatin (80 mg/kg) and GRT (100 mg/kg), a combination of either drug with GRT or a combination of GRT-pioglitazone and atorvastatin for 5 weeks. Untreated vehicle controls were given dimethyl sulfoxide (0.1%) and phosphate buffered saline solution. At termination, serum and liver tissue were collected for lipid and gene expression analysis. Treatment with GRT, pioglitazone and atorvastatin combination effectively lowered fasting plasma glucose (FPG) levels in db/db mice (p = 0.02), whilst increasing body weight, liver weight, and reducing retroperitoneal fat weight. Atorvastatin monotherapy was effective at reducing cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p = 0.0003), LDL-C (from 0.58 ± 0.04 to 0.50 ± 0.00, p = 0.04), HDL-C (from 2.86 ± 0.05 to 2.50 ± 0.04, p = 0.0003) and TG (from 2.77 ± 0.50 to 1.48 ± 0.23, p = 0.04), compared to the untreated diabetic control. The hypotriglyceridemic effect of atorvastatin was enhanced when used in combination with both GRT and pioglitazone. The addition of pioglitazone to GRT significantly lowered FPG and TG. In db/db mice, Apoa1 was significantly downregulated in the liver, whilst Pparγ was significantly upregulated compared to their db+ counterparts. GRT monotherapy downregulated Apoa1 expression (p = 0.02). Atorvastatin combined with GRT significantly downregulated mRNA expression of Apoa1 (p = 0.03), whilst upregulating the expression of Pparγ (p = 0.03), Pparα (p = 0.002), Srebp1 (p = 0.002), and Fasn (p = 0.04). The GRT-pioglitazone-atorvastatin combination therapy downregulated Apoa1 (p = 0.006), whilst upregulating Fasn (p = 0.005), Pparα (p = 0.041), and Srebp1 (p = 0.03). Natural products can improve the efficacy of current drugs to prevent diabetes-associated complications. GRT in combination with pioglitazone enhanced the reduction of FPG, whilst the addition of atorvastatin to the combination, significantly lowered triglyceride levels. However, when GRT was used in combination with atorvastatin only cholesterol levels were affected. Although these results confirm both glucose- and lipoprotein-lowering biological effects of GRT in combination with pioglitazone and atorvastatin, increased expression of genes involved in lipogenesis, cholesterol, and fatty acid transport, ß-oxidation, and synthesis and storage of fatty acids, may exacerbate the hepatotoxic effects of atorvastatin.


Assuntos
Atorvastatina/farmacologia , Chalconas/farmacologia , Pioglitazona/farmacologia , Animais , Aspalathus/química , Aspalathus/metabolismo , Atorvastatina/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Quimioterapia Combinada/métodos , Glucose/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Fitoterapia , Pioglitazona/metabolismo , Extratos Vegetais/farmacologia
3.
Clin Nutr ESPEN ; 41: 77-87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33487310

RESUMO

BACKGROUND AND AIMS: There is a general interest in understanding how the consumption of tea impacts cardiovascular function in individuals at risk of developing cardiovascular disease (CVD). The current review focuses on evidence from randomized controlled trials (RCTs) reporting on associations between tea consumption and endothelial function, in the primary and secondary prevention of coronary artery disease (CAD). METHODS: PubMed, EMBASE, and Google Scholar databases/search engines were used to identify eligible studies. Included studies had to report on the impact of tea supplementation of endothelial function or CAD related markers. In addition to flow-mediated dilation (FMD), makers of oxidative stress and inflammation such as oxidized low-density lipoprotein and C-reactive protein were considered as determinants of endothelial function. A total of 34 RCTs met the inclusion criteria, and these reported on the impact of tea consumption on endothelial function in individuals at risk of CVD or patients with CAD. RESULTS: The current qualitative synthesis of literature demonstrates that beyond enhancing nitric oxide bioavailability and lowering blood pressure, regular consumption of tea and its active ingredients such as epigallocatechin gallate may be beneficial in reducing markers of oxidative stress and inflammation. Moreover, the reduction of oxidized low-density lipoprotein and C-reactive protein levels, could be a sign of improved endothelial function in individuals at increased risk of developing CVD. CONCLUSIONS: The cumulative evidence also suggests that the development of epigallocatechin gallate as a nutraceutical or enriching foods with this bioactive compound could be a feasible strategy to improve endothelial function and lower CVD-risk. However, well-designed RCTs are still necessary to confirm long-term benefits of tea consumption on vascular health.


Assuntos
Doença da Artéria Coronariana , Doença da Artéria Coronariana/prevenção & controle , Suplementos Nutricionais , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária , Chá
4.
Molecules ; 25(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266114

RESUMO

Evidence on the beneficial effects of resveratrol supplementation on cardiovascular disease-related profiles in patients with type 2 diabetes (T2D) is conflicting, while its impact on renal function and blood pressure measurements remains to be established in these patients. The current meta-analysis included randomized controlled trials (RCTs) reporting on the impact of resveratrol supplementation on markers of renal function and blood pressure in patients with T2D on hypoglycemic medication. Electronic databases such as MEDLINE, Cochrane Library, Scopus, and EMBASE were searched for eligible studies from inception up to June 2020. The random and fixed effects model was used in the meta-analysis. A total of five RCTs met the inclusion criteria and involved 388 participants with T2D. Notably, most of the participants were on metformin therapy, or metformin in combination with other hypoglycemic drugs such as insulin and glibenclamide. Pooled estimates showed that resveratrol supplementation in patients with T2D lowered the levels of fasting glucose (SMD: -0.06 [95% CI: -0.24, 0.12]; I2 = 4%, p = 0.39) and insulin (SMD: -0.08 [95% CI: -0.50, 0.34], I2 = 73%, p = 0.002) when compared to those on placebo. In addition, supplementation significantly lowered systolic blood pressure (SMD: -5.77 [95% CI: -8.61, -2.93], I2 = 66%, p = 0.02) in these patients. Although resveratrol supplementation did not affect creatinine or urea levels, it reduced the total protein content (SMD: -0.19 [95% CI: -0.36, -0.02]; I2 = 91%, p = 0.001). In all, resveratrol supplementation in hypoglycemic therapy improves glucose control and lowers blood pressure; however, additional evidence is necessary to confirm its effect on renal function in patients with T2D.


Assuntos
Biomarcadores/análise , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais , Hipoglicemiantes/administração & dosagem , Nefropatias/prevenção & controle , Resveratrol/uso terapêutico , Antioxidantes/uso terapêutico , Pressão Sanguínea , Quimioterapia Combinada , Humanos , Testes de Função Renal
5.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375340

RESUMO

Evidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: -0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: -0.31 [95% CI: -0.54, -0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.


Assuntos
Adipocinas/metabolismo , Biomarcadores , Suplementos Nutricionais , Peroxidação de Lipídeos/efeitos dos fármacos , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Ubiquinona/análogos & derivados , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Viés de Publicação , Ubiquinona/administração & dosagem
6.
J Cell Physiol ; 235(12): 9487-9496, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32458430

RESUMO

Rooibos (Aspalathus linearis) has various health benefits. Two case studies have associated chronic Rooibos consumption with conventional prescription medications, including atorvastatin (ATV), with hepatotoxicity. Statins act by inhibiting hydroxymethylglutaryl-coenzyme A reductase, a rate-limiting enzyme in cholesterol synthesis. Although rare, statins are potentially hepatotoxic. The aim was to investigate interactions between aspalathin-rich Rooibos extract GRT™ and ATV-induced hepatotoxicity in C3A liver cells cultured with and without palmitate. Effects of co-treatment of GRT + ATV on cell viability, oxidative stress, apoptosis, mitochondrial integrity, and cellular reactive oxygen species (ROS) production were assessed. Significantly increased ROS production was observed in cells exposed to ATV and palmitate. Combination therapy of GRT + ATV also showed significant increases in ROS production. Under palmitate-treated conditions, ATV-induced significant apoptosis which was not ameliorated by GRT + ATV co-treatment. Despite studies purporting hepatoprotection from Rooibos, our study showed that GRT was unable to modulate ATV-induced hepatotoxic effects in this model.


Assuntos
Atorvastatina/farmacologia , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Fígado/efeitos dos fármacos , Fitoterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
7.
Nutrients ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168855

RESUMO

Food-derived bioactive compounds such as resveratrol are increasingly explored for their protective effects against metabolic complications. Evidence supports the strong antioxidant properties and therapeutic effects of resveratrol in managing diabetes and its associated complications. However, evidence informing on the comparative or combination effects of this natural compound with an accomplished and well-characterized antidiabetic agent like metformin has not been revised. Thus, we conducted a comprehensive systematic search of the major electronic databases which included MEDLINE, Cochrane Library, and EMBASE. The cumulative evidence strongly supports the comparative effects of metformin and resveratrol in ameliorating diabetes-associated complications in preclinical settings. In particular, both compounds showed strong ameliorative effects against hyperglycemia, dyslipidemia, insulin resistance, a pro-inflammatory response, and lipid peroxidation in various experimental models of diabetes. Enhancing intracellular antioxidant capacity in addition to activating NAD-dependent deacetylase sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK) are the prime mechanisms involved in the therapeutic effects of these compounds. Of interest, preclinical evidence also demonstrates that the combination treatment with these compounds may have a greater efficacy in protecting against diabetes. Thus, confirmation of such evidence in well-organized clinical trials remains crucial to uncover novel therapeutic strategies to manage diabetes and its linked complications.


Assuntos
Antioxidantes/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Resveratrol/uso terapêutico , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Quimioterapia Combinada , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Resveratrol/farmacologia , Resultado do Tratamento
8.
Phytother Res ; 34(7): 1519-1529, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32017271

RESUMO

The increased use of herbal supplements as complementary or alternative medicines has become a clinical conundrum due to the potential for herb-drug interactions. This is exacerbated by an increased supply of new herbal supplements in the market claiming various health advantages. These herbal supplements are available as over-the-counter self-medications. Herbal supplements are generally perceived as efficacious without side effects commonly associated with conventional drugs. However, despite regulations, claims related to their therapeutic effects are mostly unsupported by scientific evidence. These products often lack suitable product quality controls, labelled inadequately and with batch to batch variations, potentially compromising the safety of the consumer. Amongst health practitioners, the greatest concern is related to the lack of chemical characterization of the active compounds of the herbal supplements. The interaction between these different active components and their concomitant effects on other conventional drugs is generally not known. This review will focus on herbal supplements with the potential to effect pharmacokinetic and pharmacodynamic properties of oestrogen-based oral contraceptives. The use of herbal supplements for weight management, depression, and immune boosting benefits were selected as likely herbal supplements to be used concomitantly by women on oral contraceptives.


Assuntos
Anticoncepcionais Orais/química , Suplementos Nutricionais/análise , Estrogênios/metabolismo , Interações Ervas-Drogas/fisiologia , Feminino , Humanos , Masculino
9.
Mol Nutr Food Res ; 64(4): e1900377, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31408914

RESUMO

The maternal obesogenic environment plays a role in programing the susceptibility of the fetus to postnatal non-alcoholic fatty liver disease (NAFLD), a risk factor for cardiovascular disease (CVD). NAFLD is a multisystem disease that is characterized by hepatic fat accumulation due in part to dysregulated energy metabolism network through epigenetic mechanisms such as DNA methylation. DNA methylation affects fetal programing and disease risk via regulation of gene transcription; it is affected by methyl donor nutrients such as vitamin B12 , methionine, folic acid, vitamin B6 , and choline. Although several studies have documented the role of several maternal methyl donor nutrients on obesity-induced NAFLD in offspring, currently, data are lacking on its impact on CVD risk as an endpoint. The aim of this paper is to use current knowledge to construct a postulation for the potential role of a comprehensive gestational methyl donor nutrients supplementary approach on the susceptibility of offspring to developing metabolic-syndrome-related cardiovascular complications.


Assuntos
Carbono/metabolismo , Doenças Cardiovasculares/etiologia , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Complicações na Gravidez/metabolismo , Animais , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Síndrome Metabólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Gravidez
10.
Biomed Pharmacother ; 120: 109439, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31590126

RESUMO

Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Cyclopia (Planta)/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/uso terapêutico , Suplementos Nutricionais , Humanos , Fenóis , Xantonas
11.
Mol Metab ; 27: 1-10, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31300352

RESUMO

BACKGROUND: The prevalence of obesity and metabolic diseases continues to rise globally. The increased consumption of unhealthy energy-rich diets that are high in fat and sugars results in oxidative stress and inflammation leading to hypothalamic dysfunction, which has been linked with these diseases. Conversely, diets rich in polyphenols, which are phytochemicals known for their antioxidant and anti-inflammatory properties, are associated with a reduced risk for developing metabolic diseases. SCOPE OF REVIEW: This review provides an overview of the effects of polyphenols against diet-induced hypothalamic dysfunction with respect to neural inflammation and mitochondrial dysfunction. Results show that polyphenols ameliorate oxidative stress and inflammation within the hypothalamus, thereby improving leptin signaling and mitochondrial biogenesis. Furthermore, they protect against neurodegeneration by decreasing the production of reactive oxygen species and enhancing natural antioxidant defense systems. MAJOR CONCLUSIONS: The potential of polyphenols as nutraceuticals against hypothalamic inflammation, mitochondrial dysfunction, and neurodegeneration could hold tremendous value. With hypothalamic inflammation increasing naturally with age, the potential to modulate these processes in order to extend longevity is exciting and warrants exploration. The continued escalation of mental health disorders, which are characterized by heightened neuronal inflammation, necessitates the furthered investigation into polyphenol therapeutic usage in this regard.


Assuntos
Dieta/efeitos adversos , Suplementos Nutricionais , Hipotálamo/fisiopatologia , Doenças Metabólicas/etiologia , Polifenóis/uso terapêutico , Animais , Suplementos Nutricionais/análise , Humanos , Hipotálamo/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Inflamação/terapia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/terapia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/terapia
12.
Molecules ; 24(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052590

RESUMO

Type 2 diabetic patients possess a two to four fold-increased risk for Cardiovascular Diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.


Assuntos
Chalconas/farmacologia , LDL-Colesterol/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores , Glicemia/efeitos dos fármacos , Chlorocebus aethiops , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Lipídeos/sangue , Lipoproteínas LDL/sangue , Masculino , Extratos Vegetais/farmacologia , Ubiquinona/análogos & derivados , Ubiquinona/sangue
13.
Int J Mol Sci ; 20(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717198

RESUMO

We previously demonstrated that an aspalathin-enriched green rooibos extract (GRE) reversed palmitate-induced insulin resistance in C2C12 skeletal muscle and 3T3-L1 fat cells by modulating key effectors of insulin signalling such as phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK). However, the effect of GRE on hepatic insulin resistance is unknown. The effects of GRE on lipid-induced hepatic insulin resistance using palmitate-exposed C3A liver cells and obese insulin resistant (OBIR) rats were explored. GRE attenuated the palmitate-induced impairment of glucose and lipid metabolism in treated C3A cells and improved insulin sensitivity in OBIR rats. Mechanistically, GRE treatment significantly increased PI3K/AKT and AMPK phosphorylation while concurrently enhancing glucose transporter 2 expression. These findings were further supported by marked stimulation of genes involved in glucose metabolism, such as insulin receptor (Insr) and insulin receptor substrate 1 and 2 (Irs1 and Irs2), as well as those involved in lipid metabolism, including Forkhead box protein O1 (FOXO1) and carnitine palmitoyl transferase 1 (CPT1) following GRE treatment. GRE showed a strong potential to ameliorate hepatic insulin resistance by improving insulin sensitivity through the regulation of PI3K/AKT, FOXO1 and AMPK-mediated pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Chalconas/farmacologia , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Resistência à Insulina , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células 3T3 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aspalathus/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular , Chalconas/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hipoglicemiantes/isolamento & purificação , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ácido Palmítico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
14.
Nutrients ; 11(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577684

RESUMO

Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.


Assuntos
Ácido Gálico/uso terapêutico , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Estresse Oxidativo , Adipocinas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Citocinas/metabolismo , Dieta , Frutas/química , Ácido Gálico/farmacologia , Humanos , Inflamação/tratamento farmacológico , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Obesidade/complicações , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Chá/química
16.
BMC Complement Altern Med ; 18(1): 265, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285704

RESUMO

BACKGROUND: A substantial literature supports antidiabetic properties of the lanosteryl triterpene (methyl-3ß-hydroxylanosta-9,24-dien-21-oate, RA-3) isolated from Protorhus longifolia stem bark. However, the molecular mechanism(s) associated with the antihyperglycemic properties of the triterpene remained to be explored. The current study aimed at investigating the molecular mechanism(s) through which RA-3 improves insulin signaling in streptozotocin-induced type 1 diabetic rats. METHODS: The type 1 diabetic rats were treated daily with a single oral dose of RA-3 (100 mg/kg) for 28 days. The rats were then sacrificed, and blood, skeletal muscle and pancreases were collected for biochemical, protein expression and histological analysis, respectively. RESULTS: Persistently high blood glucose levels in the diabetic control rats significantly increased expression of IRS-1Ser307 while the expression of p-Akt Ser473, p-GSK-3ß Ser9, GLUT 4 and GLUT 2 were decreased. However, enhanced muscle insulin sensitivity, which was indicated by a decrease in the expression of IRS-1ser307 with a concomitant increase in the p-AktSer473, p-GSK-3ß Ser9, GLUT 4 and GLUT 2 expression were observed in the diabetic rats treated with RA-3. The triterpene-treated animals also showed an improved pancreatic ß-cells morphology, along with increased C-peptide levels. An increase in the levels of serum antioxidants such as catalase, superoxide dismutase, and reduced glutathione was noted in the rats treated with the triterpene, while their serum levels of interleukin-6 and malondialdehyde were reduced. CONCLUSIONS: It is apparent that RA-3 is able to improve the insulin signaling in type 1 diabetic rats. Its beta (ß)-cells protecting mechanism could be attributed to its ability to alleviate inflammation and oxidative stress in the cells.


Assuntos
Anacardiaceae/química , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/metabolismo , Lanosterol/análogos & derivados , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Catalase/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glutationa/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Lanosterol/administração & dosagem , Masculino , Estresse Oxidativo/efeitos dos fármacos , Casca de Planta/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo
17.
Br J Clin Pharmacol ; 84(4): 679-693, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363155

RESUMO

The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Interações Ervas-Drogas , Preparações de Plantas/efeitos adversos , Humanos , Preparações de Plantas/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença
18.
Planta Med ; 84(2): 100-110, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28938495

RESUMO

Cyclopia species are increasingly investigated as sources of phenolic compounds with potential as therapeutic agents. Recently, we demonstrated that a crude polyphenol-enriched organic fraction (CPEF) of Cyclopia intermedia, currently forming the bulk of commercial production, decreased lipid content in 3T3-L1 adipocytes and inhibited body weight gain in obese db/db mice. The aim of the present study was to determine whether a more effective product and/or one with higher specificity could be obtained by fractionation of the CPEF by purposely increasing xanthone and benzophenone levels. Fractionation of the CPEF using high performance counter-current chromatography (HPCCC) resulted in four fractions (F1-F4), predominantly containing iriflophenone-3-C-ß-D-glucoside-4-O-ß-D-glucoside (benzophenone: F1), hesperidin (flavanone: F2), mangiferin (xanthone: F3), and neoponcirin (flavone: F4), as quantified by high-performance liquid chromatography with diode array detection (HPLC-DAD), and confirmed by LC-DAD with mass spectrometric (MS) and tandem MS (MSE) detection. All fractions inhibited lipid accumulation in 3T3-L1 pre-adipocytes and decreased lipid content in mature 3T3-L1 adipocytes, although their effects were concentration-dependent. F1-F3 stimulated lipolysis in mature adipocytes. Treatment of mature adipocytes with F1 and F2 increased the messenger RNA expression of hormone sensitive lipase, while treatment with F1 and F4 increased uncoupling protein 3 expression. In conclusion, HPCCC resulted in fractions with different phenolic compounds and varying anti-obesity effects. The activities of fractions were lower than the CPEF; thus, fractionation did not enhance activity within a single fraction worthwhile for exploitation as a nutraceutical product, which illustrates the importance of considering synergistic effects in plant extracts.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Fracionamento Químico , Cyclopia (Planta)/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Adipócitos/metabolismo , Fármacos Antiobesidade/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Contracorrente/métodos , Flavonoides/farmacologia , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Hesperidina/farmacologia , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Polifenóis/isolamento & purificação , Xantonas/farmacologia
19.
Molecules ; 22(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358310

RESUMO

Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1-150 µM had an apparent rate of permeability (Papp) typical of poorly absorbed compounds (1.73 × 10-6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10-6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the Papp of aspalathin was not affected by the presence of specific inhibitors. The Papp of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the Papp value to 2.9 × 10-7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.


Assuntos
Aspalathus/química , Chalconas/farmacocinética , Absorção Intestinal , Intestinos/química , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Chalconas/administração & dosagem , Humanos , Camundongos , Permeabilidade , Extratos Vegetais/química , Urina/química
20.
Molecules ; 22(2)2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28146135

RESUMO

Aspalathin, a C-glucosyl dihydrochalcone, has previously been shown to protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent apoptosis. However, the precise gene regulatory network remains to be elucidated. To unravel the mechanism and provide insight into this supposition, the direct effect of aspalathin in an isolated cell-based system, without the influence of any variables, was tested using an H9c2 cardiomyocyte model. Cardiomyocytes were exposed to high glucose (33 mM) for 48 h before post-treatment with or without aspalathin. Thereafter, RNA was extracted and RT2 PCR Profiler Arrays were used to profile the expression of 336 genes. Results showed that, 57 genes were differentially regulated in the high glucose or high glucose and aspalathin treated groups. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis revealed lipid metabolism and molecular transport as the biological processes altered after high glucose treatment, followed by inflammation and apoptosis. Aspalathin was able to modulate key regulators associated with lipid metabolism (Adipoq, Apob, CD36, Cpt1, Pparγ, Srebf1/2, Scd1 and Vldlr), insulin resistance (Igf1, Akt1, Pde3 and Map2k1), inflammation (Il3, Il6, Jak2, Lepr, Socs3, and Tnf13) and apoptosis (Bcl2 and Chuk). Collectively, our results suggest that aspalathin could reverse metabolic abnormalities by activating Adipoq while modulating the expression of Pparγ and Srebf1/2, decreasing inflammation via Il6/Jak2 pathway, which together with an observed increased expression of Bcl2 prevents myocardium apoptosis.


Assuntos
Cardiotônicos/farmacologia , Chalconas/farmacologia , Lipídeos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Experimental , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA