Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 116(6): 1449-1462, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739333

RESUMO

For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles.


Assuntos
Anticorpos Monoclonais/biossíntese , Células Eucarióticas/metabolismo , Fatores Imunológicos/biossíntese , Proteínas Recombinantes/biossíntese , Anticorpos Monoclonais/genética , Biotecnologia/métodos , Fatores Imunológicos/genética , Engenharia Metabólica/métodos , Proteínas Recombinantes/genética , Tecnologia Farmacêutica/métodos
2.
Sci Transl Med ; 10(467)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429353

RESUMO

Important cell populations reside within tissues and are not accessed by traditional blood draws used to monitor the immune system. To address this issue at an essential barrier tissue, the skin, we created a microneedle-based technology for longitudinal sampling of cells and interstitial fluid, enabling minimally invasive parallel monitoring of immune responses. Solid microneedle projections were coated by a cross-linked biocompatible polymer, which swells upon skin insertion, forming a porous matrix for local leukocyte infiltration. By embedding molecular adjuvants and specific antigens encapsulated in nanocapsules within the hydrogel coating, antigen-specific lymphocytes can be enriched in the recovered cell population, allowing for subsequent detailed phenotypic and functional analysis. We demonstrate this approach in mice immunized with a model protein antigen or infected in the skin with vaccinia virus. After vaccination or infection, sampling microneedles allowed tissue-resident memory T cells (TRMs) to be longitudinally monitored in the skin for many months, during which time the antigen-specific T cell population in systemic circulation contracted to low or undetectable counts. Sampling microneedles did not change the immune status of naïve or antigen-exposed animals. We also validated the ability of cell sampling using human skin samples. This approach may be useful in vaccines and immunotherapies to temporally query TRM populations or as a diagnostic platform to sample for biomarkers in chronic inflammatory and autoimmune disorders, allowing information previously accessible only via invasive biopsies to be obtained in a minimally invasive manner from the skin or other mucosal tissues.


Assuntos
Líquido Extracelular/metabolismo , Monitorização Imunológica/métodos , Agulhas , Pele/imunologia , Adjuvantes Imunológicos/farmacologia , Alginatos/química , Animais , Antígenos/metabolismo , Humanos , Imunidade Humoral/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Nanocápsulas
3.
Biotechnol Bioeng ; 112(12): 2624-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032261

RESUMO

Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV/imunologia , Pichia/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/isolamento & purificação , Anticorpos Anti-HIV/metabolismo , Humanos , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Tempo
4.
J Am Chem Soc ; 124(8): 1576-7, 2002 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11853422

RESUMO

This paper describes microcontact printing (muCP) of long-chain alkanethiolates on palladium, followed by solution-phase etching with an iron(III)-based etchant, to make patterned structures. The commonly used soft-lithographic procedure for fabricating microstructures-muCP of SAMs on gold-has three shortcomings: a significant surface density of pinhole defects, substantial edge roughness, and incompatibility with processes used in CMOS fabrication. Microcontact printing on palladium gives fewer defects and smaller edge roughness than on gold, and is compatible with CMOS. The mechanism by which etch-resistant patterns are formed is different for palladium and gold. The Pd/S interfacial layer formed by the reaction of palladium films with sulfur-containing compounds provides good resistance to etches independently of the barrier to access the surface provided by the film of (CH2)n groups in the long-chain SAMs. This barrier is the basis of the etch resistance of SAMs on gold, but only supplements the etch resistance of the sulfur-containing interfacial layer on palladium. Characterization of the SAM formed from hexadecanethiol on palladium is described.


Assuntos
Paládio/química , Compostos de Sulfidrila/química , Microscopia Eletrônica de Varredura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA