Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pharmacol Exp Ther ; 372(3): 339-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31818916

RESUMO

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Ligação Competitiva , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/sangue , Escherichia coli/enzimologia , Escherichia coli/genética , Células HeLa , Humanos , Cinética , Leucócitos Mononucleares/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Monoacilglicerol Lipases/genética , Dor/tratamento farmacológico , Piperazinas/sangue , Ligação Proteica , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Sono REM/efeitos dos fármacos , Especificidade por Substrato
2.
Neuropsychopharmacology ; 43(13): 2586-2596, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30026598

RESUMO

Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1ß release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1ß release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1ß release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG-induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation. Finally, in a rat model of chronic stress induced sucrose intake deficit, JNJ-55308942 reversed the deficit with concurrent high P2X7 brain occupancy as measured by autoradiography. This body of data demonstrates that JNJ-55308942 is a potent P2X7 antagonist, engages the target in brain, modulates IL-1ß release and microglial activation leading to efficacy in two models of anhedonia in rodents.


Assuntos
Anedonia/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Mediadores da Inflamação/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Purinérgicos P2X7/fisiologia , Anedonia/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Piridinas/química , Piridinas/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Wistar
3.
Psychopharmacology (Berl) ; 233(9): 1623-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26803500

RESUMO

Mood disorders, despite the widespread availability of monoamine-based antidepressant treatments, are associated with persistently high rates of disability, together with elevated rates of mortality due to suicide, cardiovascular disease, and other causes. The development of more effective treatments has been hindered by the lack of knowledge about the etiology and pathogenesis of mood disorders. An emerging area of science that promises novel pathways to antidepressant and mood stabilizing therapies surrounds evidence that immune cells and their signaling play a major role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). Here, we review evidence that the release of neuroactive cytokines, particularly interleukins such as IL-1ß, IL-6, and TNF-α, is altered in these disorders and discuss mechanisms such as the ATP-gated ion channel P2X7, through which cytokine signaling can influence neuro-glial interactions. Brain P2X7, an emerging target and antagonism of P2X7 holds promise as a novel mechanism for targeting treatment-resistant depression. We further discuss the role of microglia and astroglia in central neuroinflammation and their interaction with the peripheral immune system We present extant clinical evidence that bolsters the role of neuroinflammation and neuroactive cytokines in mood disorders. To that end, the role of clinical imaging by probing neuroinflammatory markers is also discussed briefly. Finally, we present data using preclinical neuroinflammation models that produce depression-like behaviors in experimental animals to identify neuroinflammatory mechanisms which may aid in novel neuroimmune target identification for the development of exciting pharmacological interventions in mood disorders.


Assuntos
Inflamação/imunologia , Inflamação/psicologia , Transtornos do Humor/imunologia , Transtornos do Humor/fisiopatologia , Psiconeuroimunologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiopatologia , Citocinas/metabolismo , Humanos , Inflamação/fisiopatologia , Transtornos do Humor/psicologia
4.
Front Behav Neurosci ; 8: 453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25642174

RESUMO

Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

5.
Bioorg Med Chem Lett ; 23(14): 4141-4, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23756063

RESUMO

A series of small molecules with a piperidinyl core were synthesized and tested for binding affinity (IC50) at human Neuropeptide Y Y2 receptor. Various amide related analogs (ureas, reversed amides, and sulfonamides) were evaluated. Several potent and selective NPY Y2 antagonists were identified.


Assuntos
Amidas/química , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Amidas/síntese química , Amidas/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Microssomos/metabolismo , Ligação Proteica , Ratos , Receptores de Neuropeptídeo Y/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/metabolismo , Ureia/síntese química , Ureia/química , Ureia/metabolismo
6.
Bioorg Med Chem Lett ; 20(14): 4210-4, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20561786

RESUMO

The pre-clinical characterization of novel aryloxypyridine amides that are histamine H(3) receptor antagonists is described. These compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain. Several compounds were extensively profiled pre-clinically leading to the identification of two compounds suitable for nomination as development candidates.


Assuntos
Azepinas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Piridinas/farmacologia , Amidas/química , Animais , Azepinas/química , Avaliação Pré-Clínica de Medicamentos , Piridinas/química , Ratos
7.
Neuropharmacology ; 56(8): 1131-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19345233

RESUMO

Histamine 3 (H(3)) receptors are distributed throughout the brain and regulate histamine as well as the activity of other neurotransmitters including acetylcholine (ACh). Impaired ACh neurotransmission is associated with deficits of cognitive-related functioning in many species including humans. The goal of these studies was to evaluate the behavioral and neurochemical effects of JNJ-10181457, a selective non-imidazole histamine H(3) receptor antagonist, in rats. The pharmacokinetic profile and receptor occupancy of JNJ-10181457 were tested. The efficacy of JNJ-10181457 was evaluated, acutely, in the imetit-induced water licking model, delayed non-matching to position (DNMTP) task and microdialysis studies. In addition, the effects of repeated administration of JNJ-10181457 were evaluated in the reversal learning task. A single administration of JNJ-10181457 (10 mg/kg, i.p.) resulted in significant plasma and brain exposure and maximal H(3) receptor occupancy. In addition, JNJ-10181457 reversed imetit-induced water licking, similarly to thioperamide (10 mg/kg, i.p.). In the DNMTP task, scopolamine (0.06 mg/kg, i.p.) significantly decreased percentage correct responding. These effects were significantly reversed by JNJ-10181457 (10 mg/kg, i.p.) and also by donepezil (1 mg/kg, i.p.), an acetylcholinesterase inhibitor, and were associated with normalization of ACh neurotransmission in the cortex. Repeated administration of JNJ-10181457 (10 mg/kg, i.p.) significantly increased percentage correct responding in the reversal learning task. Treatment discontinuation was not associated with rebound effects on cognition. These results indicate that selective blockade of histamine H(3) receptors might have therapeutic utility for the treatment of working memory deficits and learning disorders, especially those in which ACh neurotransmission is compromised.


Assuntos
Acetilcolina/metabolismo , Cognição/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/farmacologia , Morfolinas/farmacologia , Nootrópicos/farmacologia , Piperidinas/farmacologia , Receptores Histamínicos H3/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Cognição/fisiologia , Condicionamento Operante/efeitos dos fármacos , Donepezila , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Avaliação Pré-Clínica de Medicamentos , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/farmacocinética , Imidazóis/farmacologia , Indanos/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Microdiálise , Morfolinas/farmacocinética , Antagonistas Muscarínicos/farmacologia , Nootrópicos/farmacocinética , Piperidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacologia , Transmissão Sináptica/fisiologia , Tioureia/análogos & derivados , Tioureia/farmacologia
8.
Bioorg Med Chem Lett ; 19(3): 903-7, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19119007

RESUMO

A novel series of imidazole containing histamine H(3) receptor ligands were investigated and found to be potent functional antagonists. After improving the stability of these molecules towards liver microsomes, these compounds were found to have no appreciable affinity for CYP P450s. Subsequent in vivo experiments showed significant brain uptake of (4-chloro-phenyl)-[2-(1-isopropyl-piperidin-4-ylmethoxy)-3-methyl-3H-imidazol-4-yl]-methanone 22.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Química Farmacêutica/métodos , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/síntese química , Imidazóis/química , Animais , Encéfalo/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Cobaias , Antagonistas dos Receptores Histamínicos H3/metabolismo , Humanos , Ligantes , Modelos Químicos , Ligação Proteica , Ratos , Relação Estrutura-Atividade
9.
Bioorg Med Chem ; 16(6): 2968-73, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18249544

RESUMO

Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.


Assuntos
Inibidores da Colinesterase/química , Antagonistas dos Receptores Histamínicos H3/química , Modelos Moleculares , Doença de Alzheimer/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Relação Quantitativa Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 16(4): 897-900, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16300945

RESUMO

Aplysamine-1 (1), a marine natural product, was synthesized and screened for in vitro activity at the human and rat histamine H3 receptors. Aplysamine-1 (1) was found to possess a high binding affinity for the human H3 receptor (Ki = 30+/-4 nM). Synthetic analogs of 1, including des-bromoaplysamine-1 (10) and dimethyl-{2-[4-(3-piperidin-1-yl-propoxy)-phenyl]-ethyl}-amine (13), were potent H3 antagonists.


Assuntos
Receptores Histamínicos H3/efeitos dos fármacos , Tirosina/análogos & derivados , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Tirosina/síntese química , Tirosina/química , Tirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA