Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761958

RESUMO

Previous studies have shown that inhibition of TNF family member FN14 (gene: TNFRSF12A) in colon tumors decreases inflammatory cytokine expression and mitigates cancer-induced cachexia. However, the molecular mechanisms underlying the regulation of FN14 expression remain unclear. Tumor microenvironments are often devoid of nutrients and oxygen, yet how the cachexic response relates to the tumor microenvironment and, importantly, nutrient stress is unknown. Here, we looked at the connections between metabolic stress and FN14 expression. We found that TNFRSF12A expression was transcriptionally induced during glutamine deprivation in cancer cell lines. We also show that the downstream glutaminolysis metabolite, alpha-ketoglutarate (aKG), is sufficient to rescue glutamine-deprivation-promoted TNFRSF12A induction. As aKG is a co-factor for histone de-methylase, we looked at histone methylation and found that histone H3K4me3 at the Tnfrsf12a promoter is increased under glutamine-deprived conditions and rescued via DM-aKG supplementation. Finally, expression of Tnfrsf12a and cachexia-induced weight loss can be inhibited in vivo by DM-aKG in a mouse cancer cachexia model. These findings highlight a connection between metabolic stress and cancer cachexia development.


Assuntos
Caquexia , Neoplasias do Colo , Receptor de TWEAK , Animais , Camundongos , Caquexia/genética , Caquexia/prevenção & controle , Modelos Animais de Doenças , Glutamina/farmacologia , Código das Histonas , Histona Metiltransferases , Histonas/genética , Ácidos Cetoglutáricos/farmacologia , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral/metabolismo , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo
2.
Nat Cancer ; 1(3): 345-358, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32832918

RESUMO

Genetic-driven deregulation of the Wnt pathway is crucial but not sufficient for colorectal cancer (CRC) tumourigenesis. Here, we show that environmental glutamine restriction further augments Wnt signaling in APC mutant intestinal organoids to promote stemness and leads to adenocarcinoma formation in vivo via decreasing intracellular alpha-ketoglutarate (aKG) levels. aKG supplementation is sufficient to rescue low-glutamine induced stemness and Wnt hyperactivation. Mechanistically, we found that aKG promotes hypomethylation of DNA and histone H3K4me3, leading to an upregulation of differentiation-associated genes and downregulation of Wnt target genes, respectively. Using CRC patient-derived organoids and several in vivo CRC tumour models, we show that aKG supplementation suppresses Wnt signaling and promotes cellular differentiation, thereby significantly restricting tumour growth and extending survival. Together, our results reveal how metabolic microenvironment impacts Wnt signaling and identify aKG as a potent antineoplastic metabolite for potential differentiation therapy for CRC patients.


Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Neoplasias Colorretais/tratamento farmacológico , Glutamina , Humanos , Ácidos Cetoglutáricos/farmacologia , Organoides , Microambiente Tumoral , Via de Sinalização Wnt/genética
3.
Nat Commun ; 11(1): 3326, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620791

RESUMO

Tumour cells adapt to nutrient deprivation in vivo, yet strategies targeting the nutrient poor microenvironment remain unexplored. In melanoma, tumour cells often experience low glutamine levels, which promote cell dedifferentiation. Here, we show that dietary glutamine supplementation significantly inhibits melanoma tumour growth, prolongs survival in a transgenic melanoma mouse model, and increases sensitivity to a BRAF inhibitor. Metabolomic analysis reveals that dietary uptake of glutamine effectively increases the concentration of glutamine in tumours and its downstream metabolite, αKG, without increasing biosynthetic intermediates necessary for cell proliferation. Mechanistically, we find that glutamine supplementation uniformly alters the transcriptome in tumours. Our data further demonstrate that increase in intra-tumoural αKG concentration drives hypomethylation of H3K4me3, thereby suppressing epigenetically-activated oncogenic pathways in melanoma. Therefore, our findings provide evidence that glutamine supplementation can serve as a potential dietary intervention to block melanoma tumour growth and sensitize tumours to targeted therapy via epigenetic reprogramming.


Assuntos
Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Glutamina/farmacologia , Melanoma/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética/genética , Glutamina/administração & dosagem , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Melanoma/genética , Melanoma/patologia , Metilação/efeitos dos fármacos , Camundongos Nus , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA