RESUMO
Folic acid, served as dietary supplement, is closely linked to one-carbon metabolism and methionine metabolism. Previous clinical evidence indicated that folic acid supplementation displays dual effect on cancer development, promoting or suppressing tumor formation and progression. However, the underlying mechanism remains to be uncovered. Here, we report that high-folate diet significantly promotes cancer development in mice with hepatocellular carcinoma (HCC) induced by DEN/high-fat diet (HFD), simultaneously with increased expression of methionine adenosyltransferase 2A (gene name, MAT2A; protein name, MATIIα), the key enzyme in methionine metabolism, and acceleration of methionine cycle in cancer tissues. In contrast, folate-free diet reduces MATIIα expression and impedes HFD-induced HCC development. Notably, methionine metabolism is dynamically reprogrammed with valosin-containing protein p97/p47 complex-interacting protein (VCIP135) which functions as a deubiquitylating enzyme to bind and stabilize MATIIα in response to folic acid signal. Consistently, upregulation of MATIIα expression is positively correlated with increased VCIP135 protein level in human HCC tissues compared to adjacent tissues. Furthermore, liver-specific knockout of Mat2a remarkably abolishes the advocating effect of folic acid on HFD-induced HCC, demonstrating that the effect of high or free folate-diet on HFD-induced HCC relies on Mat2a. Moreover, folate and multiple intermediate metabolites in one-carbon metabolism are significantly decreased in vivo and in vitro upon Mat2a deletion. Together, folate promotes the integration of methionine and one-carbon metabolism, contributing to HCC development via hijacking MATIIα metabolic pathway. This study provides insight into folate-promoted cancer development, strongly recommending the tailor-made folate supplement guideline for both sub-healthy populations and patients with cancer expressing high level of MATIIα expression.
Assuntos
Ácido Fólico , Metionina Adenosiltransferase , Animais , Dieta , Ácido Fólico/farmacologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Metionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , CamundongosRESUMO
Network pharmacology is an emerging discipline that designs drugs based on systems biology theory and biological system network analysis. Here, we applied network pharmacology to analyze the multi-target mechanism of Cyclosporin A in the treatment of vitiligo First, we predicted the targets of Cyclosporin A. Second, we obtained the genes related to vitiligo from the database. Third, we constructed the PPI network of the mutual genes between Cyclosporin A and vitiligo and used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze. Finally, we verified the prediction of potential targets through a docking study with Cyclosporin A. We found that there were 15 shared target genes between Cyclosporin A and vitiligo. We analyzed these 15 genes by Cytoscape and obtained a network diagram of 885 nodes. Through screening and molecular docking, PRKDC, CUL7, CUL1, HSPA8, HSPA4, and SIRT7 were the most likely multi-target mechanism of Cyclosporin A in the treatment of vitiligo. In our study, Cyclosporin A might not only affect the repair of DNA strands by targeting PRKDC, but also affected the innate and adaptive immune function of vitiligo patients by the targets of CUL1, CUL7, and HSP70. In addition, Cyclosporin A might promote the repigmentation of vitiligo by adjusting the expression of SIRT7.
Assuntos
Medicamentos de Ervas Chinesas , Vitiligo , Ciclosporina , Ontologia Genética , Humanos , Simulação de Acoplamento Molecular , Vitiligo/tratamento farmacológico , Vitiligo/genéticaRESUMO
Protein N-terminal acetylation (Nα-acetylation) is one of the most common modifications in both eukaryotes and prokaryotes. Although studies have shown that Nα-acetylation plays important roles in protein assembly, stability, and location, the physiological role has not been fully elucidated. Therefore, a robust and large-scale analytical method is important for a better understanding of Nα-acetylation. Here, an enrichment strategy was presented based on LysN digestion and amine-reactive resin capture to study naturally acetylated protein N termini. Since LysN protease cleaves at the amino-terminus of the lysine residue, all resulting peptides except naturally acetylated N-terminal peptides contain free amino groups and can be removed by coupling with AminoLink Resin. Therefore, the naturally acetylated N-terminal peptides were left in solution and enriched for further liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was very simple and fast, which contained no additional chemical derivatization except protein reduction and alkylation necessarily needed in bottom-up proteomics. It could be used to study acetylated N termini from complex biological samples without bias toward different peptides with various physicochemical properties. The enrichment specificity was above 99% when it was applied in HeLa cell lysates. Neo-N termini generated by endogenous degradation could be directly distinguished without the use of stable-isotope labeling because no chemical derivatization was introduced in this method. Furthermore, this method was highly complementary to the traditional analytical methods for protein N termini based on trypsin only with ArgC-like activity. Therefore, the described method was beneficial to naturally acetylated protein N termini profiling.
Assuntos
Aminas/metabolismo , Lisina/metabolismo , Resinas Sintéticas/metabolismo , Acetilação , Aminas/química , Células HeLa , Humanos , Lisina/química , Resinas Sintéticas/análiseRESUMO
The identification and quantification of low-abundant proteins are always impeded by high-abundant proteins in proteomic analysis because of the extreme complexity of peptide mixtures and wide dynamic range of protein abundances. Here, we developed a novel approach to enrich and quantify N-terminal glycine peptides through sortase A mediated ligation. This strategy was based on the formation of a covalent bond between the sortase A recognition motif LPXTG and a N-terminal glycine residue. Also, the quantification was achieved by introducing isotopically labeled threonine in the motif LPXTG. In this strategy, both the enrichment of N-terminal glycine peptides and the stable isotope labeling were achieved in a single step. We applied this approach for the proteome analysis of MCF-7 cell line. It was demonstrated a significant reduction in sample complexity via highly selective and efficient enrichment of N-terminal glycine peptides, thereby detecting lots of less abundant proteins and enhancing proteome coverage. In comparison to the untreated sample, an increase of 34% of proteins was additionally identified. Furthermore, 97% of proteins were successfully quantified with high accuracy. In summary, this quantitative N-terminal glycine peptides enrichment strategy is expected for high-throughput qualitative and quantitative proteomic analysis as a complementary approach to conventional shotgun proteomics.
Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Glicina/química , Peptídeos/química , Peptídeos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Humanos , Células MCF-7RESUMO
Mitochondrial functions are dynamically regulated in the heart. In particular, protein phosphorylation has been shown to be a key mechanism modulating mitochondrial function in diverse cardiovascular phenotypes. However, site-specific phosphorylation information remains scarce for this organ. Accordingly, we performed a comprehensive characterization of murine cardiac mitochondrial phosphoproteome in the context of mitochondrial functional pathways. A platform using the complementary fragmentation technologies of collision-induced dissociation (CID) and electron transfer dissociation (ETD) demonstrated successful identification of a total of 236 phosphorylation sites in the murine heart; 210 of these sites were novel. These 236 sites were mapped to 181 phosphoproteins and 203 phosphopeptides. Among those identified, 45 phosphorylation sites were captured only by CID, whereas 185 phosphorylation sites, including a novel modification on ubiquinol-cytochrome c reductase protein 1 (Ser-212), were identified only by ETD, underscoring the advantage of a combined CID and ETD approach. The biological significance of the cardiac mitochondrial phosphoproteome was evaluated. Our investigations illustrated key regulatory sites in murine cardiac mitochondrial pathways as targets of phosphorylation regulation, including components of the electron transport chain (ETC) complexes and enzymes involved in metabolic pathways (e.g. tricarboxylic acid cycle). Furthermore, calcium overload injured cardiac mitochondrial ETC function, whereas enhanced phosphorylation of ETC via application of phosphatase inhibitors restored calcium-attenuated ETC complex I and complex III activities, demonstrating positive regulation of ETC function by phosphorylation. Moreover, in silico analyses of the identified phosphopeptide motifs illuminated the molecular nature of participating kinases, which included several known mitochondrial kinases (e.g. pyruvate dehydrogenase kinase) as well as kinases whose mitochondrial location was not previously appreciated (e.g. Src). In conclusion, the phosphorylation events defined herein advance our understanding of cardiac mitochondrial biology, facilitating the integration of the still fragmentary knowledge about mitochondrial signaling networks, metabolic pathways, and intrinsic mechanisms of functional regulation in the heart.
Assuntos
Mitocôndrias/metabolismo , Miocárdio/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida/métodos , Transporte de Elétrons , Coração/fisiologia , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos ICR , Peptídeos/química , Fenótipo , Fosforilação , Fosfotransferases/químicaRESUMO
The design and characterization of titania-based and alumina-based Poly(dimethylsiloxane) (PDMS) microfluidics enzymatic-reactors along with their analytical features in coupling with MALDI-TOF and ESI-MS were reported. Microfluidics with microchannel and stainless steel tubing (SST) were fabricated using PDMS casting and O(2)-plasma techniques, and were used for the preparation of an enzymatic-reactor. Plasma oxidation for the PDMS microfluidic system enabled the channel wall of the microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups act as anchors onto the microchannel wall linked covalently with the hydroxyl groups of trypsin-encapsulated sol matrix. As a result, the trypsin-encapsulated gel matrix was anchored onto the wall of the microchannel, and the leakage of gel matrix from the microchannel was effectively prevented. A feature of the microfluidic enzymatic-reactors is the feasibility of performing on-line protein analysis by attached SST electrode and replaceable tip. The success of trypsin encapsulation was investigated by AFM imaging, assay of enzymatic activity, CE detection, and MALDI-TOF and ESI-MS analysis. The lab-made devices provide an excellent extent of digestion even at a fast flow rate of 7.0 microL/min, which affords the very short residence time of ca. 2 s. With the present device, the digestion time was significantly shortened compared to conventional tryptic reaction schemes. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are required for high-throughput protein identification.