Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(3): 717-730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958169

RESUMO

Photoperiod/temperature-sensitive genic male sterility (P/TGMS) is widely applied for improving crop production. Previous investigations using the reversible male sterile (rvms) mutant showed that slow development is a general mechanism for restoring fertility to P/TGMS lines in Arabidopsis. In this work, we isolated a restorer of rvms-2 (res3), as the male sterility of rvms-2 was rescued by res3. Phenotype analysis and molecular cloning show that a point mutation in UPEX1 l in res3 leads to delayed secretion of callase A6 from the tapetum to the locule and tetrad callose wall degradation. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis demonstrated that the tapetal transcription factor ABORTED MICROSPORES directly regulates UPEX1 expression, revealing a pathway for tapetum secretory function. Early degradation of the callose wall in the transgenic line eliminated the fertility restoration effect of res3. The fertility of multiple known P/TGMS lines with pollen wall defects was also restored by res3. We propose that the remnant callose wall may broadly compensate for the pollen wall defects of P/TGMS lines by providing protection for pollen formation. A cellular mechanism is proposed to explain how slow development restores the fertility of P/TGMS lines in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infertilidade Masculina , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Glucanos , Infertilidade Masculina/metabolismo , Fotoperíodo , Infertilidade das Plantas/genética , Pólen/metabolismo , Temperatura
2.
J Exp Bot ; 71(16): 4877-4889, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374882

RESUMO

Sporophytic pollen coat proteins (sPCPs) derived from the anther tapetum are deposited into pollen wall cavities and function in pollen-stigma interactions, pollen hydration, and environmental protection. In Arabidopsis, 13 highly abundant proteins have been identified in pollen coat, including seven major glycine-rich proteins GRP14, 16, 17, 18, 19, 20, and GRP-oleosin; two caleosin-related family proteins (AT1G23240 and AT1G23250); three lipase proteins EXL4, EXL5 and EXL6, and ATA27/BGLU20. Here, we show that GRP14, 17, 18, 19, and EXL4 and EXL6 fused with green fluorescent protein (GFP) are translated in the tapetum and then accumulate in the anther locule following tapetum degeneration. The expression of these sPCPs is dependent on two essential tapetum transcription factors, MALE STERILE188 (MS188) and MALE STERILITY 1 (MS1). The majority of sPCP genes are up-regulated within 30 h after MS1 induction and could be restored by MS1 expression driven by the MS188 promoter in ms188, indicating that MS1 is sufficient to activate their expression; however, additional MS1 downstream factors appear to be required for high-level sPCP expression. Our ChIP, in vivo transactivation assay, and EMSA data indicate that MS188 directly activates MS1. Together, these results reveal a regulatory cascade whereby outer pollen wall formation is regulated by MS188 followed by synthesis of sPCPs controlled by MS1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant J ; 88(6): 936-946, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27460657

RESUMO

The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biopolímeros/biossíntese , Carotenoides/biossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA