Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Ethnopharmacol ; 305: 116081, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608777

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. However, its complex pathogenesis and lack of effective drugs for treating it present significant challenges. Si-Ni-San (SNS) is one of the representative formulas for treating patients with MAFLD in traditional Chinese medicine (TCM) clinics. According to our previous work, SNS reduces lipid droplet (LD) deposition in livers of mice with MAFLD. AIM OF THE STUDY: To elucidate the mechanism of SNS in reducing LD deposition in MAFLD. MATERIALS AND METHODS: First, LD areas were detected with Oil red O staining in HepG2 cells induced by oleic acid (OA). Cell Counting Kit-8 (CCK-8) assay was used to test cell viability after treatment with different concentrations of SNS serum. The expression of Yes-associated protein 1 (YAP1) was monitored by Western blot. Second, C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks and gavaged with SNS decoction during the 11th and 12th weeks. Then, the weight of the body and the liver was examined. LD numbers and their locations in the liver were detected by triglyceride (TG) assay and hematoxylin and eosin staining (H&E). The expression levels of YAP1 and perilipin2 (PLIN2) were detected using Western blot and immunohistochemistry (IHC) in liver tissues. Finally, active ingredients of SNS decoction and SNS serum were identified by liquid chromatography-mass spectrometry (LC-MS). Finally, molecular docking was performed between the compounds in SNS and YAP1 to analyze their active interaction. RESULTS: Cellular experiments showed that SNS serum reduced LD vacuoles and YAP1 expression in OA-induced HepG2 cells. Animal experiments confirmed that LD vacuoles, PLIN2 expression (3.16-fold), and YAP1 expression (2.50-fold) were increased in the HFD group compared with the normal diet (ND) group. SNS reduced LD vacuoles, TG content (0.84-fold), PLIN2 expression (0.33-fold), and YAP1 expression (0.27-fold) compared with the normal saline (NS) group in Yap1Flox mice with MAFLD. In SNS, baicalein-6-glucuronide, desoxylimonin, galangin-7-glucoside, glycyrrhizic-acid, licoricesaponin-K2, and nobiletin showed a high binding effect with YAP1. Knockout of hepatocyte YAP1 reduced LD vacuoles, TG content (0.40-fold), and PLIN2 expression (0.62-fold) in mice. Meanwhile, SNS reduced LD vacuoles, TG content (0.70-fold), and PLIN2 expression (0.19-fold) in Yap1LKO mice with MAFLD. The effect of SNS in reducing TG and PLIN2 was diminished in Yap1LKO mice compared with Yap1Flox mice. CONCLUSION: SNS reduced LD deposition and YAP1 expression in MAFLD liver cells both in vivo and in vitro. YAP1 was highly expressed in livers with MAFLD, and knockout of hepatocellular YAP1 reduced LD deposition in mice. SNS reduced LD deposition associated with decreased YAP1 in MAFLD liver cells.


Assuntos
Gotículas Lipídicas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Gotículas Lipídicas/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Triglicerídeos/metabolismo , Dieta Hiperlipídica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
J Nat Med ; 77(1): 28-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36068393

RESUMO

Hepatocellular carcinoma (HCC) was the third most common cause of cancer death. But it has only limited therapeutic options, aggressive nature, and very low overall survival. Dihydroartemisinin (DHA), an anti-malarial drug approved by the Food and Drug Administration (FDA), inhibited cell growth in HCC. The Warburg effect was one of the ten new hallmarks of cancer. Solute carrier family 2 member 1 (SLC2A1) was a crucial carrier for glucose to enter target cells in the Warburg effect. Yes-associated transcriptional regulator 1 (YAP1), an effector molecule of the hippo pathway, played a crucial role in promoting the development of HCC. This study sought to determine the role of DHA in the SLC2A1 mediated Warburg effect in HCC. In this study, DHA inhibited the Warburg effect and SLC2A1 in HepG2215 cells and mice with liver tumors in situ. Meanwhile, DHA inhibited YAP1 expression by inhibiting YAP1 promoter binding protein GA binding protein transcription factor subunit beta 1 (GABPB1) and cAMP responsive element binding protein 1 (CREB1). Further, YAP1 knockdown/knockout reduced the Warburg effect and SLC2A1 expression by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors. Taken together, our data indicated that YAP1 knockdown/knockout reduced the SLC2A1 mediated Warburg effect by shYAP1-HepG2215 cells and Yap1LKO mice with liver tumors induced by DEN/TCPOBOP. DHA, as a potential YAP1 inhibitor, suppressed the SLC2A1 mediated Warburg effect in HCC.


Assuntos
Artemisininas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transportador de Glucose Tipo 1 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/uso terapêutico , Humanos
3.
Front Pharmacol ; 13: 911982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620286

RESUMO

Phenolic acids are cardiovascular constituents (originating from the Chinese medicinal herb Salvia miltiorrhiza root/Danshen) of DanHong and many other Danshen-containing injections. Our earlier pharmacokinetic investigation of DanHong suggested that hepatic and/or renal uptake of the Danshen compounds was the crucial steps in their systemic elimination. This investigation was designed to survey the molecular basis underlying hepatobiliary and renal excretion of the Danshen compounds, i.e., protocatechuic acid, tanshinol, rosmarinic acid, salvianolic acid D, salvianolic acid A, lithospermic acid, and salvianolic acid B. A large battery of human hepatic and renal transporters were screened for transporting the Danshen compounds and then characterized for the uptake kinetics and also compared with associated rat transporters. The samples were analyzed by liquid chromatography/mass spectrometry. Because the Danshen phenolic acids are of poor or fairly good membrane permeability, their elimination via the liver or kidneys necessitates transporter-mediated hepatic or renal uptake from blood. Several human transporters were found to mediate hepatic and/or renal uptake of the Danshen compounds in a compound-molecular-mass-related manner. Lithospermic acid and salvianolic acid B (both >500 Da) underwent systemic elimination, initiated by organic anion-transporting polypeptide (OATP)1B1/OATP1B3-mediated hepatic uptake. Rosmarinic acid and salvianolic acids D (350-450 Da) underwent systemic elimination, initiated by OATP1B1/OATP1B3/organic anion transporter (OAT)2-mediated hepatic uptake and by OAT1/OAT2-mediated renal uptake. Protocatechuic acid and tanshinol (both <200 Da) underwent systemic elimination, initiated by OAT1/OAT2-mediated renal uptake and OAT2-mediated hepatic uptake. A similar scenario was observed with the rat orthologs. The investigation findings advance our understanding of the disposition of the Danshen phenolic acids and could facilitate pharmacokinetic research on other Danshen-containing injections.

4.
J Magn Reson Imaging ; 54(3): 964-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960534

RESUMO

BACKGROUND: Hyperpolarized 129 Xe magnetic resonance imaging (MRI) provides a non-invasive assessment of regional pulmonary gas exchange function. This technique has demonstrated that chronic obstructive pulmonary disease (COPD) patients exhibit ventilation defects, reduced interstitial barrier tissue uptake, and poor transfer to capillary red blood cells (RBCs). However, the behavior of these measurements following therapeutic intervention is unknown. PURPOSE: To characterize changes in 129 Xe gas transfer function following administration of an inhaled long-acting beta-agonist/long-acting muscarinic receptor antagonist (LABA/LAMA) bronchodilator. STUDY TYPE: Prospective. POPULATION: Seventeen COPD subjects (GOLD II/III classification per Global Initiative for Chronic Obstructive Lung Disease criteria) were imaged before and after 2 weeks of LABA/LAMA therapy. FIELD STRENGTH/SEQUENCES: Dedicated ventilation imaging used a multi-slice 2D gradient echo sequence. Three-dimensional images of ventilation, barrier uptake, and RBC transfer used an interleaved, radial, 1-point Dixon sequence. Imaging was acquired at 3 T. ASSESSMENT: 129 Xe measurements were quantified before and after LABA/LAMA treatment by ventilation defect + low percent (vendef + low ) and by barrier uptake and RBC transfer relative to a healthy reference population (bar%ref and RBC%ref ). Pulmonary function tests, including diffusing capacity of the lung for carbon monoxide (DLCO ), were also performed before and after treatment. STATISTICAL TESTS: Paired t-test, Pearson correlation coefficient (r). RESULTS: Baseline vendef + low was 57.8 ± 8.4%, bar%ref was 73.2 ± 19.6%, and RBC%ref was 36.5 ± 13.6%. Following treatment, vendef + low decreased to 52.5 ± 10.6% (P < 0.05), and improved in 14/17 (82.4%) of subjects. However, RBC%ref decreased in 10/17 (58.8%) of subjects. Baseline measurements of bar%ref and DLCO were correlated with the degree of post-treatment change in vendef + low (r = -0.49, P < 0.05 and r = -0.52, P < 0.05, respectively). CONCLUSION: LABA/LAMA therapy tended to preferentially improve ventilation in subjects whose 129 Xe barrier uptake and DLCO were relatively preserved. However, newly ventilated regions often revealed RBC transfer defects, an aspect of lung function opaque to spirometry. These microvasculature abnormalities must be accounted for when assessing the effects of LABA/LAMA therapy. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 4.


Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Broncodilatadores/uso terapêutico , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
5.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33931765

RESUMO

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacocinética , Compostos Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Disponibilidade Biológica , Biotransformação , Cápsulas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Glycyrrhiza/efeitos adversos , Células HEK293 , Humanos , Síndrome de Liddle/induzido quimicamente , Síndrome de Liddle/enzimologia , Masculino , Segurança do Paciente , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/efeitos adversos , Ratos Sprague-Dawley , Medição de Risco
6.
Acta Pharmacol Sin ; 40(6): 833-849, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30327544

RESUMO

ShenMai, an intravenous injection prepared from steamed Panax ginseng roots (Hongshen) and Ophiopogon japonicus roots (Maidong), is used as an add-on therapy for coronary artery disease and cancer; saponins are its bioactive constituents. Since many saponins inhibit human organic anion-transporting polypeptides (OATP)1B, this investigation determined the inhibition potencies of circulating ShenMai saponins on the transporters and the joint potential of these compounds for ShenMai-drug interaction. Circulating saponins and their pharmacokinetics were characterized in rats receiving a 30-min infusion of ShenMai at 10 mL/kg. Inhibition of human OATP1B1/1B3 and rat Oatp1b2 by the individual saponins was investigated in vitro; the compounds' joint inhibition was also assessed in vitro and the data was processed using the Chou-Talalay method. Plasma protein binding was assessed by equilibrium dialysis. Altogether, 49 saponins in ShenMai were characterized and graded into: 10-100 µmol/day (compound doses from ShenMai; 7 compounds), 1-10 µmol/day (17 compounds), and <1 µmol/day (25 compounds, including Maidong ophiopogonins). After dosing, circulating saponins were protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd, Ra1, Rg3, Ra2, and Ra3, protopanaxatriol-type ginsenosides Rg1, Re, Rg2, and Rf, and ginsenoside Ro. The protopanaxadiol-type ginsenosides exhibited maximum plasma concentrations of 2.1-46.6 µmol/L, plasma unbound fractions of 0.4-1.0% and terminal half-lives of 15.6-28.5 h (ginsenoside Rg3, 1.9 h), while the other ginsenosides exhibited 0.1-7.7 µmol/L, 20.8-99.2%, and 0.2-0.5 h, respectively. The protopanaxadiol-type ginsenosides, ginsenosides without any sugar attachment at C-20 (except ginsenoside Rf), and ginsenoside Ro inhibited OATP1B3 more potently (IC50, 0.2-3.5 µmol/L) than the other ginsenosides (≥22.6 µmol/L). Inhibition of OATP1B1 by ginsenosides was less potent than OATP1B3 inhibition. Ginsenosides Rb1, Rb2, Rc, Rd, Ro, Ra1, Re, and Rg2 likely contribute the major part of OATP1B3-mediated ShenMai-drug interaction potential, in an additive and time-related manner.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Ginsenosídeos/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores , Administração Intravenosa , Animais , Combinação de Medicamentos , Interações Medicamentosas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Ginsenosídeos/administração & dosagem , Ginsenosídeos/sangue , Ginsenosídeos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Masculino , Ophiopogon/química , Panax/química , Ligação Proteica , Ratos Sprague-Dawley , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA