Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 69(2): 742-759, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30215850

RESUMO

Liver regeneration after injury is normally mediated by proliferation of hepatocytes, although recent studies have suggested biliary epithelial cells (BECs) can differentiate into hepatocytes during severe liver injury when hepatocyte proliferation is impaired. We investigated the effect of hepatocyte-specific ß-catenin deletion in recovery from severe liver injury and BEC-to-hepatocyte differentiation. To induce liver injury, we administered choline-deficient, ethionine-supplemented (CDE) diet to three different mouse models, the first being mice with deletion of ß-catenin in both BECs and hepatocytes (Albumin-Cre; Ctnnb1flox/flox mice). In our second model, we performed hepatocyte lineage tracing by injecting Ctnnb1flox/flox ; Rosa-stopflox/flox -EYFP mice with the adeno-associated virus serotype 8 encoding Cre recombinase under the control of the thyroid binding globulin promoter, a virus that infects only hepatocytes. Finally, we performed BEC lineage tracing via Krt19-CreERT ; Rosa-stopflox/flox -tdTomato mice. To observe BEC-to-hepatocyte differentiation, mice were allowed to recover on normal diet following CDE diet-induced liver injury. Livers were collected from all mice and analyzed by quantitative real-time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. We show that mice with lack of ß-catenin in hepatocytes placed on the CDE diet develop severe liver injury with impaired hepatocyte proliferation, creating a stimulus for BECs to differentiate into hepatocytes. In particular, we use both hepatocyte and BEC lineage tracing to show that BECs differentiate into hepatocytes, which go on to repopulate the liver during long-term recovery. Conclusion: ß-catenin is important for liver regeneration after CDE diet-induced liver injury, and BEC-derived hepatocytes can permanently incorporate into the liver parenchyma to mediate liver regeneration.


Assuntos
Diferenciação Celular , Hepatócitos/fisiologia , Hepatopatias/fisiopatologia , beta Catenina/fisiologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Fígado/patologia , Hepatopatias/patologia , Regeneração Hepática , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta Catenina/genética
2.
Gut ; 64(2): 312-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24837171

RESUMO

OBJECTIVE: Following chronic liver injury or when hepatocyte proliferation is impaired, ductular reactions containing hepatic progenitor cells (HPCs) appear in the periportal regions and can regenerate the liver parenchyma. HPCs exist in a niche composed of myofibroblasts, macrophages and laminin matrix. Galectin-3 (Gal-3) is a ß-galactoside-binding lectin that binds to laminin and is expressed in injured liver in mice and humans. DESIGN: We examined the role of Gal-3 in HPC activation. HPC activation was studied following dietary induced hepatocellular (choline-deficient ethionine-supplemented diet) and biliary (3,5-diethoxycarbonyl-1,4-dihydrocollidine supplemented diet) injury in wild type and Gal-3(-/-) mice. RESULTS: HPC proliferation was significantly reduced in Gal-3(-/-) mice. Gal-3(-/-) mice failed to form a HPC niche, with reduced laminin formation. HPCs isolated from wild type mice secrete Gal-3 which enhanced adhesion and proliferation of HPCs on laminin in an undifferentiated form. These effects were attenuated in Gal3(-/-) HPCs and in wild type HPCs treated with the Gal-3 inhibitor lactose. Gal-3(-/-) HPCs in vitro showed increased hepatocyte function and prematurely upregulated both biliary and hepatocyte differentiation markers and regulated cell cycle genes leading to arrest in G0/G1. CONCLUSIONS: We conclude that Gal-3 is required for the undifferentiated expansion of HPCs in their niche in injured liver.


Assuntos
Galectina 3/fisiologia , Fígado/lesões , Células-Tronco/patologia , Animais , Adesão Celular/fisiologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Dieta/efeitos adversos , Galectina 3/biossíntese , Galectina 3/deficiência , Hepatócitos/fisiologia , Humanos , Laminina/metabolismo , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Regulação para Cima
3.
Hepatology ; 60(5): 1727-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24585441

RESUMO

UNLABELLED: In severe liver injury, ductular reactions (DRs) containing bipotential hepatic progenitor cells (HPCs) branch from the portal tract. Neural cell adhesion molecule (NCAM) marks bile ducts and DRs, but not mature hepatocytes. NCAM mediates interactions between cells and surrounding matrix; however, its role in liver development and regeneration is undefined. Polysialic acid (polySia), a unique posttranslational modifier of NCAM, is produced by the enzymes, ST8SiaII and ST8SiaIV, and weakens NCAM interactions. The role of polySia with NCAM synthesizing enzymes ST8SiaII and ST8SiaIV were examined in HPCs in vivo using the choline-deficient ethionine-supplemented and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet models of liver injury and regeneration, in vitro using models of proliferation, differentiation, and migration, and by use of mouse models with gene defects in the polysialyltransferases (St8sia 2+/-4+/-, and St8sia2-/-4-/-). We show that, during liver development, polySia is required for the correct formation of bile ducts because gene defects in both the polysialyltransferases (St8sia2+/-4+/- and St8sia2-/-4-/- mice) caused abnormal bile duct development. In normal liver, there is minimal polySia production and few ductular NCAM+ cells. Subsequent to injury, NCAM+ cells expand and polySia is produced by DRs/HPCs through ST8SiaIV. PolySia weakens cell-cell and cell-matrix interactions, facilitating HGF-induced migration. Differentiation of HPCs to hepatocytes in vitro results in both transcriptional down-regulation of polySia and cleavage of polySia-NCAM. Cleavage of polySia by endosialidase (endoN) during liver regeneration reduces migration of DRs into parenchyma. CONCLUSION: PolySia modification of NCAM+ ductules weakens cell-cell and cell-matrix interactions, allowing DRs/HPCs to migrate for normal development and regeneration. Modulation of polySia levels may provide a therapeutic option in liver regeneration.


Assuntos
Regeneração Hepática , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Diferenciação Celular , Movimento Celular , Técnicas de Cocultura , Hepatócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Neuraminidase , Oncostatina M , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA