Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(9): 183, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555965

RESUMO

KEY MESSAGE: The transcription factor StDL1 regulates dissected leaf formation in potato and the genotype frequency of recessive Stdl1/Stdl1, which results in non-dissected leaves, has increased in cultivated potatoes. Leaf morphology is a key trait of plants, influencing plant architecture, photosynthetic efficiency and yield. Potato (Solanum tuberosum L.), the third most important food crop worldwide, has a diverse leaf morphology. However, despite the recent identification of several genes regulating leaf formation in other plants, few genes involved in potato leaf development have been reported. In this study, we identified an R2R3 MYB transcription factor, Dissected Leaf 1 (StDL1), regulating dissected leaf formation in potato. A naturally occurring allele of this gene, Stdl1, confers non-dissected leaves in young seedlings. Knockout of StDL1 in a diploid potato changes the leaf morphology from dissected to non-dissected. Experiments in N. benthamiana and yeast show that StDL1 is a transcriptional activator. Notably, by calculating the genotype frequency of the Stdl1/Stdl1 in 373-potato accessions, we found that it increases significantly in cultivated potatoes. This work reveals the genetic basis of dissected leaf formation in potato and provides insights into plant leaf morphology.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fotossíntese , Fenótipo
2.
J Integr Plant Biol ; 64(3): 671-687, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963038

RESUMO

Heterosis is a fundamental biological phenomenon characterized by the superior performance of hybrids over their parents. Although tremendous progress has been reported in seed crops, the molecular mechanisms underlying heterosis in clonally propagated crops are largely unknown. Potato (Solanum tuberosum L.) is the most important tuber crop and an ongoing revolution is transforming potato from a clonally propagated tetraploid crop into a seed-propagated diploid hybrid potato. In our previous study, we developed the first generation of highly homozygous inbred lines of potato and hybrids with strong heterosis. Here, we integrated transcriptome, metabolome, and DNA methylation data to explore the genetic and molecular basis of potato heterosis at three developmental stages. We found that the initial establishment of heterosis in diploid potato was mainly due to dominant complementation. Flower color, male fertility, and starch and sucrose metabolism showed obvious gene dominant complementation in hybrids, and hybrids devoted more energy to primary metabolism for rapid growth. In addition, we identified ~2 700 allele-specific expression genes at each stage, which likely function in potato heterosis and might be regulated by CHH allele-specific methylation level. Our multi-omics analysis provides insight into heterosis in potato and facilitates the exploitation of heterosis in potato breeding.


Assuntos
Vigor Híbrido , Solanum tuberosum , Diploide , Vigor Híbrido/genética , Hibridização Genética , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia
3.
Molecules ; 19(8): 12065-77, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25120057

RESUMO

Various products containing sinomenine monomer and extracts of Sinomenium acutum have been widely applied in clinical treatments. The goal of the present study was to compare the pharmacokinetics of sinomenine in rats after oral administration of sinomenine monomer and Sinomenium acutum extract, and to attempt to explore potential component-component interactions between the constituents of this traditional Chinese herbal medicine. A reliable and specific reversed phase high performance liquid chromatography method was developed to analyze sinomenine in rat plasma. Pharmacokinetic parameters for sinomenine were processed by non-compartmental analysis. The results showed that the maximum concentration, the area under the concentration-time curve, clearance and the apparent volume of distribution of sinomenine in the Sinomenium acutum extract statistically differed from those of sinomenine monomer (p < 0.05); however, the mean residence time, time of peak concentration, and half-life did not show significant differences between the two groups. These findings suggested that some additional components in the Sinomenium acutum extract may decrease the absorption of sinomenine. The complex interactions between sinomenine and other components of the herbal extract could result in the altered pharmacokinetic behavior of sinomenine, which may subsequently cause different therapeutic and detoxification effects.


Assuntos
Morfinanos/farmacocinética , Extratos Vegetais/farmacocinética , Sinomenium/química , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Inativação Metabólica , Morfinanos/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA