Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37741055

RESUMO

Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.


Assuntos
Acetatos , Ginkgo biloba , Ginkgolídeos , Oxilipinas , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Ginkgolídeos/metabolismo , Extratos Vegetais/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
3.
Chin J Integr Med ; 29(11): 998-1006, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37661231

RESUMO

OBJECTIVE: To explore the mechanism of Radix Scrophulariae (RS) extracts in the treatment of hyperthyroidism rats by regulating proliferation, apoptosis, and autophagy of thyroid cell through the mammalian sterile 20-like kinase 1 (MST1)/Hippo pathway. METHODS: Twenty-four rats were randomly divided into 4 groups according to a random number table: control, model group, RS, and RS+Hippo inhibitor (XMU-MP-1) groups (n=6 per group). Rats were gavaged with levothyroxine sodium tablet suspension (LST, 8 µ g/kg) for 21 days except for the control group. Afterwards, rats in the RS group were gavaged with RS extracts at the dose of 1,350 mg/kg, and rats in the RS+XMU-MP-1 group were gavaged with 1,350 mg/kg RS extracts and 1 mg/kg XMU-MP-1. After 15 days of administration, thyroid gland was taken for gross observation, and histopathological changes were observed by hematoxylin-eosin staining. The structure of Golgi secretory vesicles in thyroid tissues was observed by transmission electron microscopy. The expression of thyrotropin receptor (TSH-R) was observed by immunohistochemistry. Terminal-deoxynucleoitidyl transferase mediated nick end labeling assay was used to detect cell apoptosis in thyroid tissues. Real-time quantity primer chain reaction and Western blot were used to detect the expressions of MST1, p-large tumor suppressor gene 1 (LATS1), p-Yes1 associated transcriptional regulator (YAP), proliferating cell nuclear antigen (PCNA), G1/S-specific cyclin-D1 (Cyclin D1), B-cell lymphoma-2 (Bcl-2), Caspase-3, microtubule-associated proeins light chain 3 II/I (LC3-II/I), and recombinant human autophagy related 5 (ATG5). Thyroxine (T4) level was detected by enzyme-linked immunosorbent assay. RESULTS: The thyroid volume of rats in the model group was significantly increased compared to the normal control group (P<0.01), and pathological changes such as uneven size of follicular epithelial cells, disorderly arrangement, and irregular morphology occurred. The secretion of small vesicles by Golgi apparatus was reduced, and the expressions of receptor protein TSH-R and T4 were significantly increased (P<0.01), while the expressions of MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 were significantly decreased (P<0.01). The expressions of Bcl-2, PCNA, and cyclin D1 were significantly increased (P<0.01). Compared with the model group, RS extracts reduced the volume of thyroid gland, improved pathological condition of the thyroid gland, promoted secretion of the secretory vesicles with double-layer membrane structure in thyroid Golgi, significantly inhibited the expression of TSH-R and T4 levels (P<0.01), upregulated MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 expressions (P<0.01), and downregulated Bcl-2, PCNA, and Cyclin D1 expressions (P<0.01). XMU-MP-1 inhibited the intervention effects of RS extracts (P<0.01). CONCLUSION: RS extracts could inhibit proliferation and promote apoptosis and autophagy in thyroid tissues through MST1/Hippo pathway for treating hyperthyroidism.


Assuntos
Via de Sinalização Hippo , Hipertireoidismo , Ratos , Humanos , Animais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Caspase 3/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Apoptose , Hipertireoidismo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tireotropina/farmacologia , Mamíferos/metabolismo
4.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449344

RESUMO

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Assuntos
COVID-19 , Lonicera , Ácido Oleanólico , Plantas Medicinais , Saponinas , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/genética , Saponinas/química , Genômica , Evolução Molecular
5.
Chin Herb Med ; 15(2): 271-277, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265763

RESUMO

Objective: As a medicinal plant, the resource of Rhodiola dumulosa is deficient along with the large collection. For the protection and utilization of R. dumulosa, the influence of plant growth regulators (PGRs) on callus induction and adventitious shoots differentiation, polysaccharide production and the antioxidant activity were tested. Methods: Internodes of R. dumulosa were used as explants and cultured on MS medium plus different plant growth regulators (PGRs). The anti-oxidative activities of polysaccharides were evaluated using radical scavenging assays. Results: By response surface plot, 0.85 mg/L N6-benzyladenine (BA), 0.34 mg/L naphthaleneacetic acid (NAA) and 0.33 mg/L 2,4-dicholorophenoxyacetic acid (2,4-D) were the optimal factors for callus induction (90.03%) from internodes explants on MS medium. The fresh weight of green callus increased 47.26 fold, when callus was inoculated on MS + thidiazuron (TDZ) 0.5 mg/L + NAA 2.0 mg/L. Adventitious buds regenerated from callus on the media of MS were fortified with BA 1.0 mg/L plus NAA 0.5 mg/L, and the induction rate was 40.00%. MS plus indole-3-butyric acid (IBA) 1.0 mg/L produced the highest rooting rate with 10 to 15 roots in a length of 2-3 cm per shoot. The content of total polysaccharides in callus developed on MS + TDZ 0.5 mg/L + NAA 2.0 mg/L and MS + BA 1.0 mg/L + NAA 0.5 mg/L was as high as 1.72%-2.15%. At the dose of 0.5 mg/mL polysaccharides extracted from different callus induced on MS + NAA 2.0 mg/L + TDZ 0.5 mg/L or MS + BA 1.0 mg/L + NAA 0.5 mg/L or MS + BA 0.5 mg/L + 2,4-D 0.5 mg/L, the ABTS radical eliminating percentages were 82.78%, 80.18% and 68.59%, respectively, much higher than that of wild plant. Conclusion: A rapid micropropagation system for R. dumulosa has been developed. The combination of TDZ and NAA or BA and NAA can increase the yield of the total polysaccharides. The polysaccharides isolated from callus and whole wild plants had stronger free radicals scavenging activities, indicating that polysaccharides from R. dumulosa are the potential pharmaceutical supplements.

6.
Plant Physiol Biochem ; 201: 107845, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364508

RESUMO

Bryophyllum pinnatum (Lam.) Oken is an ornamental and ethno-medicine plant, which can grow a circle of adventitious bud around the leaf margin. The dynamic change of metabolites during the development of B. pinnatum remains poorly understood. Here, leaves from B. pinnatum at four developmental stages were sampled based on morphological characteristics. A non-targeted metabolomics approach was used to evaluate the changes of endogenous metabolites during adventitious bud formation in B. pinnatum. The results showed that differential metabolites were mainly enriched in sphingolipid metabolism, flavone and flavonol biosynthesis, phenylalanine metabolism, and tricarboxylic acid cycle pathway. The metabolites assigned to amino acids, flavonoids, sphingolipids, and the plant hormone jasmonic acid decreased from period Ⅰ to Ⅱ, and then increased from period Ⅲ to Ⅳ with the emergence of adventitious bud (period Ⅲ). While the metabolites related to the tricarboxylic acid cycle showed a trend of first increasing and then decreasing during the four observation periods. Depending on the metabolite changes, leaves may provide conditions similar to in vitro culture for adventitious bud to occur, thus enabling adventitious bud to grow at the leaf edge. Our results provide a basis for illustrating the regulatory mechanisms of adventitious bud in B. pinnatum.


Assuntos
Kalanchoe , Plantas Medicinais , Kalanchoe/química , Extratos Vegetais , Metabolômica , Folhas de Planta/química
7.
Physiol Plant ; 175(2): e13896, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36951039

RESUMO

Salt stress is a dominant environmental factor that restricts the growth and yield of crops. Nitrogen is an essential mineral element for plants, regulates various physiological and biochemical processes, and has been reported to enhance salt tolerance in plants. However, the crosstalk between salt and nitrogen in grapes is not well understood. In this study, we found that nitrogen supplementation (0.01 and 0.1 mol L-1 NH4 NO3 ) significantly increased the accumulation of proline, chlorophyll, Na+ , NH4 + , and NO3 - , while it reduced the malondialdehyde content and inhibited photosynthetic performance under salt stress conditions (200 mmol L-1 NaCl). Further transcriptome and metabolome analyses showed that a total of 4890 differentially expressed genes (DEGs) and 753 differently accumulated metabolites (DAMs) were identified. Joint omics results revealed that plant hormone signal transduction pathway connected the DEGs and DAMs. In-depth analysis revealed that nitrogen supplementation increased the levels of endogenous abscisic acid, salicylic acid, and jasmonic acid by inducing the expression of 11, 4, and 13 genes related to their respective biosynthesis pathway. In contrast, endogenous indoleacetic acid content was significantly reduced due to the remarkable regulation of seven genes of its biosynthetic pathway. The modulation in hormone contents subsequently activated the differential expression of 13, 10, 12, and 29 genes of the respective downstream hormone signaling transduction pathways. Overall, all results indicate that moderate nitrogen supplementation could improve salt tolerance by regulating grape physiology and endogenous hormone homeostasis, as well as the expression of key genes in signaling pathways, which provides new insights into the interactions between mineral elements and salt stress.


Assuntos
Hormônios , Tolerância ao Sal , Vitis , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Nitrogênio/metabolismo , Tolerância ao Sal/genética , Plântula/metabolismo , Vitis/metabolismo
8.
J Exp Bot ; 74(5): 1343-1357, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36573380

RESUMO

Terpenoid glycosides have significant curative effects on many kinds of diseases. Most of these compounds are derived from medicinal plants. Glycosylation is a key step in the biosynthesis of medicinal terpenoids. In plants, UDP-dependent glycosyltransferases comprise a large family of enzymes that catalyze the transfer of sugars from donor to acceptor to form various bioactive glycosides. In recent years, numerous terpenoid UDP-glycosyltransferases (UGTs) have been cloned and characterized in medicinal plants. We review the typical characteristics and evolution of terpenoid-related UGTs in plants and summarize the advances and research strategies of terpenoid UGTs in medicinal plants over the past 20 years. We provide a reference for the study of glycosylation of terpenoid skeletons and the biosynthetic pathways for medicinal terpenoids in plants.


Assuntos
Glicosiltransferases , Terpenos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Terpenos/metabolismo , Difosfato de Uridina/metabolismo , Projetos de Pesquisa , Plantas/metabolismo , Glicosídeos
9.
Front Pharmacol ; 13: 1015035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188580

RESUMO

Sinomenine is a natural compound extracted from the medicinal plant Sinomenium acutum. Its supplementation has been shown to present benefits in a variety of animal models of central nervous system (CNS) disorders, such as cerebral ischemia, intracerebral hemorrhage, traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, depression, multiple sclerosis, morphine tolerance, and glioma. Therefore, sinomenine is now considered a potential agent for the prevention and/or treatment of CNS disorders. Mechanistic studies have shown that inhibition of oxidative stress, microglia- or astrocyte-mediated neuroinflammation, and neuronal apoptosis are common mechanisms for the neuroprotective effects of sinomenine. Other mechanisms, including activation of nuclear factor E2-related factor 2 (Nrf2), induction of autophagy in response to inhibition of protein kinase B (Akt)-mammalian target of rapamycin (mTOR), and activation of cyclic adenosine monophosphate-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), may also mediate the anti-glioma and neuroprotective effects of sinomenine. Sinomenine treatment has also been shown to enhance dopamine receptor D2 (DRD2)-mediated nuclear translocation of αB-crystallin (CRYAB) in astrocytes, thereby suppressing neuroinflammation via inhibition of Signal Transducer and Activator of Transcription 3 (STAT3). In addition, sinomenine supplementation can suppress N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx and induce γ-aminobutyric acid type A (GABAA) receptor-mediated Cl- influx, each of which contributes to the improvement of morphine dependence and sleep disturbance. In this review, we outline the pharmacological effects and possible mechanisms of sinomenine in CNS disorders to advance the development of sinomenine as a new drug for the treatment of CNS disorders.

10.
Genome ; 65(7): 377-389, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576612

RESUMO

Polygonaceae is a large family of medicinal herbs that includes many species used as traditional Chinese medicine, such as Per sicaria per foliata. Here, we sequenced the complete chloroplast genome of P. per foliata using Illumina sequencing technology with the purpose of providing a method to facilitate accurate identification. After being annotated, the complete chloroplast genome of P. per foliata was compared with those of Fagopyrum tataricum, Per sicaria chinensis, Fagopyrum dibotrys, and Fallopia multiflora. The complete chloroplast genome of P. per foliata is 160 730 bp in length, containing a small single-copy region of 12 927 bp, a large single-copy region of 85 433 bp, and a pair of inverted repeat regions of 62 370 bp. A total of 131 genes were annotated, including 8 rRNA genes, 34 tRNA genes, and 84 protein-coding genes. Forty-two simple sequence repeats and 55 repeat sequences were identified. Mutational hotspot analyses indicated that five genes (matK, ndhF, ccsA, cemA, and rpl20) could be selected as candidates for molecular markers. Moreover, phylogenetic analysis showed that all the Polygonaceae species formed a monophyletic clade, and P. per foliata showed the closest relationship with P. chinense. The study provides valuable molecular information to accurately identify P. per foliata and assist in its development and application.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Polygonaceae , Repetições de Microssatélites , Filogenia , Plantas Medicinais/genética , Polygonaceae/genética
11.
Nat Prod Rep ; 39(3): 474-511, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34581387

RESUMO

Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.


Assuntos
Ginkgo biloba , Plantas Medicinais , Flavonoides/química , Flavonoides/farmacologia , Ginkgo biloba/química , Filogenia , Extratos Vegetais/química
12.
BMC Infect Dis ; 21(1): 1156, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775956

RESUMO

BACKGROUND: Streptococcus pneumoniae (S. pneumoniae) is a major cause of bacterial meningitis, septicemia and pneumonia in children. Inappropriate choice of antibiotic can have important adverse consequences for both the individual and the community. Here, we focused on penicillin/cefotaxime non-susceptibility of S. pneumoniae and evaluated appropriateness of targeted antibiotic therapy for children with IPD (invasive pneumococcal diseases) in China. METHODS: A multicenter retrospective study was conducted in 14 hospitals from 13 provinces in China. Antibiotics prescription, clinical features and resistance patterns of IPD cases from January 2012 to December 2017 were collected. Appropriateness of targeted antibiotics therapy was assessed. RESULTS: 806 IPD cases were collected. The non-susceptibility rates of S. pneumoniae to penicillin and cefotaxime were 40.9% and 20.7% respectively in 492 non-meningitis cases, whereas those were 73.2% and 43.0% respectively in 314 meningitis cases. Carbapenems were used in 21.3% of non-meningitis cases and 42.0% of meningitis cases for targeted therapy. For 390 non-meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were used in 17.9% and 8.7% of cases respectively for targeted therapy. For 179 meningitis cases with isolates susceptible to cefotaxime, vancomycin and linezolid were prescribed in 55.3% and 15.6% of cases respectively. Overall, inappropriate targeted therapies were identified in 361 (44.8%) of 806 IPD cases, including 232 (28.8%) cases with inappropriate use of carbapenems, 169 (21.0%) cases with inappropriate use of vancomycin and 62 (7.7%) cases with inappropriate use of linezolid. CONCLUSIONS: Antibiotic regimens for IPD definite therapy were often excessive with extensive prescription of carbapenems, vancomycin or linezolid in China. Antimicrobial stewardship programs should be implemented to improve antimicrobial use.


Assuntos
Antibacterianos , Infecções Pneumocócicas , Antibacterianos/uso terapêutico , Criança , China/epidemiologia , Humanos , Lactente , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/epidemiologia , Prescrições , Estudos Retrospectivos
13.
J Chromatogr A ; 1657: 462572, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34601257

RESUMO

Rapid identification of chemical analogues in herbal medicines using liquid chromatography-mass spectrometry was an efficient tool for discoveries of potentially active ingredients. Multi-dimensional combination of various separation technologies could significantly enhance the capacities for detection of trace components and discrimination of multiple isomers. In this study, an integrated two-step filtering strategy on liquid chromatography-ion mobility tandem with quadrupole-time-of-flight mass spectrometry (LC-IM-QTOF MS) was developed for identification of analogues in complex matrixes. The extracted raw data were preliminarily filtered by a collision-cross section (CCS) interval generated from power regression with confidence level at 99% for prediction of analogues. Then, the remained ions were further screened using a mass defect filtering (MDF) window based on m/z and decimal m/z of potential skeletons and substituents. By applying this strategy, 86, 102, 73, and 57 isoquinoline alkaloids were identified in herbal materials of Coptis chinensis Franch (CC), C. deltoidea C.Y.Cheng et Hsiao (CD), C. teeta Wall (CT), and Corydalis yanhusuo W.T.Wang (CY). The integrated two-step filtering presented higher efficiencies on exclusion of the background interference and reducing the false-positive rates than previously reported approaches. This study facilitated the application of LC-IM-MS on small molecular analysis and promoted the discoveries of bioactive components of herbal medicines for further pharmacological researches and quality control.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Íons , Espectrometria de Massas
14.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3288-3297, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34396747

RESUMO

Ginkgolides,the unique terpenoids in Ginkgo biloba,have a significant effect on the prevention and treatment of cardiovascular and cerebrovascular diseases. Metabolic regulation and synthetic biology strategies are efficient methods to obtain high-quality ginkgolides. The present study reviewed the cloning and functions of genes related to the biosynthetic pathway of ginkgolides,as well as relevant studies of omics,genetic transformation,and metabolic regulation in recent years,and predicted the research trends and prospects,aiming to provide a reference for discovering the key genes related to the biosynthetic pathway and the biosynthesis of ginkgolides.


Assuntos
Ginkgo biloba , Ginkgolídeos , Ginkgo biloba/genética , Humanos , Lactonas , Extratos Vegetais , Terpenos
15.
Exp Ther Med ; 21(6): 623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33936280

RESUMO

Audio-visual (AV) or music distraction may be used to reduce pain during several healthcare procedures. The present manuscript is a systematic review and meta-analysis to assess the effectiveness of media distraction in reducing pain and anxiety in extracorporeal shock wave lithotripsy (ESWL) patients. The PubMed, Embase, Scopus, BioMed Central, Ovoid and CENTRAL (Cochrane Central Register of Controlled Trials) databases were screened for studies assessing the role of media distraction (music/AV media) in reducing pain and anxiety of ESWL patients. Data were summarized using the mean difference (MD) with 95% confidence intervals (CI). A total of 11 randomized controlled trials were included. Pooled analysis indicated a statistically significant difference in pain outcomes with media distraction [mean difference (MD): -1.18; 95% CI: -2.35, -0.01; I2=96.8%)]. Subgroup analysis indicated that both AV media (MD: -2.94; 95% CI: -4.70, -1.17; I2=79.2%) and music (MD: -0.86; 95% CI: -1.37, -0.35; I2=62.5%), led to significant reduction in pain outcomes. Pooled analysis indicated a statistically significant reduction of anxiety scores with the use of media distraction (MD: -3.91; 95% CI: -6.44, -1.38; I2=77.7%). To conclude, the present review suggests that media distraction in the form of AV media or music may be beneficial in reducing the pain and anxiety of patients undergoing ESWL. Evidence is, however, weak considering the small effect size, confidence intervals being close to zero, and instability of the results on sensitivity analysis. In clinical practice, media distraction may be used during ESWL as a nursing intervention, but a clinically important reduction of pain and anxiety may not be expected.

16.
Phytomedicine ; 85: 153542, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799225

RESUMO

BACKGROUND: Paridis Rhizoma (PR) is a famous traditional herbal medicine. Apart from two officially recorded species, viz. Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. (PPY) and P. polyphylla Smith var. chinensis (Franch.) Hara (PPC), there are still many other species used as folk medicine. It is necessary to understand the metabolic differences among Paris species. PURPOSE: To establish a strategy that can discover species-specific steroidal saponin markers to distinguish closely-related Paris herbs for quality and safety control. METHODS: A new strategy of molecular-networking-guided discovery of species-specific markers was proposed. Firstly, the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was applied to obtain the MS and MS/MS data of all samples. Then, molecular networking (MN) was created using MS/MS data to prescreen the steroidal saponins for subsequent analysis. Next, the principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) models were established to discover potential markers. Finally, the verification, identification and distribution of chemical markers were performed. RESULTS: A total of 126 steroidal saponins were screened out from five species using MN. Five species were classified successfully by OPLS-DA model, and 18 species-specific markers were discovered combining the variable importance in the projection (VIP) value, P value (one-way ANOVA) and their relative abundance. These markers could predict the species of Paris herbs correctly. CONCLUSION: These results revealed that this new strategy could be an efficient way for chemical discrimination of medicinal herbs with close genetic relationship.


Assuntos
Melanthiaceae/classificação , Plantas Medicinais/classificação , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Análise dos Mínimos Quadrados , Melanthiaceae/química , Plantas Medicinais/química , Rizoma/química , Saponinas/química , Especificidade da Espécie , Espectrometria de Massas em Tandem
17.
Artigo em Chinês | WPRIM | ID: wpr-879050

RESUMO

Chemical constituents from aerial parts of Glycyrrhiza uralensis were analyzed and identified using ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The chromatographic column of Waters Acquity UPLC BEH-C_(18)(2.1 mm×100 mm, 1.7 μm) was adopted, with acetonitrile-water(0.5% formic acid) as mobile phase at a flow rate of 0.2 mL·min~(-1). Data was collected in positive and negative modes of electrospray ionization(ESI). A total of 55 compounds, including 42 flavonoids, 9 stilbenes, 2 coumarins, 1 lignin and 1 phenolic acid, which were characterized in the aerial parts of G. uralensis based on accurate molecular mass information of molecular and product ions provided by UPLC-Q-Exactive Orbitrap-MS based on comparison with standard substances and references. It is an effective and accurate method to provide chemical information of constituents in aerial parts of G. uralensis, and can provide a reference for further study on pharmacodynamic material basis and resources development and utilization.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Espectrometria de Massas , Componentes Aéreos da Planta
18.
Artigo em Chinês | WPRIM | ID: wpr-878893

RESUMO

This study aims to investigate the potential mechanism of curcumin in mediating interleukin-6(IL-6)/signal transducer and activator of transcription 3(STAT3) signaling pathway to repair intestinal mucosal injury induced by 5-fluorouracil(5-FU) chemotherapy for colon cancer. SD rats were intraperitoneally injected with 60 mg·kg~(-1)·d~(-1) 5-FU for 4 days to establish a model of intestinal mucosal injury. Then the rats were randomly divided into model group(equal volume of normal saline), curcumin low, medium and high dose groups(50, 100, 200 mg·kg~(-1)), and normal SD rats were used as control group(equal volume of normal saline). Each group received gavage administration for 4 consecutive days, and the changes of body weight and feces were recorded every day. After administration, blood was collected from the heart, and jejunum tissues were collected. The levels of serum interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were detected by ELISA, and at the same time, the concentration of Evans blue(EB) in jejunum was measured. Hematoxylin-eosin(HE) staining was used to observe the pathological state of jejunum, and the length of jejunum villi and the depth of crypt were measured. The positive expression levels of claudin, occludin and ZO-1 were detected by immunohistochemistry. Western blot was used to detect the protein expression of IL-6, p-STAT3, E-cadherin, vimentin and N-cadherin in jejunum tissues. The results showed that, curcumin significantly increased body weight and fecal weight(P<0.05 or P<0.01), decreased fecal score, EB concentration, IL-1β and TNF-α levels(P<0.05 or P<0.01) in rats. In addition, curcumin maintained the integrity of mucosal surface and villi structure of jejunum to a large extent, and reduced pathological changes in a dose-dependent manner. Meanwhile, curcumin could increase the positive expression of occludin, claudin and ZO-1(P<0.05 or P<0.01), repair intestinal barrier function, downregulate the protein expression of IL-6, p-STAT3, vimentin and N-cadherin in jejunum tissues(P<0.05 or P<0.01), and upregulate the protein expression of E-cadherin(P<0.05). Therefore, curcumin could repair the intestinal mucosal injury induced by 5-FU chemotherapy for colon cancer, and the mechanism may be related to the inhibition of IL-6/STAT3 signal and the inhibition of epithelial-mesenchymal transition(EMT) process.


Assuntos
Animais , Ratos , Neoplasias do Colo/tratamento farmacológico , Curcumina , Fluoruracila/toxicidade , Interleucina-6/genética , Mucosa Intestinal/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
19.
Anal Chim Acta ; 1056: 62-69, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30797461

RESUMO

The traditional Chinese medicine Citri Reticulatae Pericarpium (CRP) was mainly originated from the dried pericarp of Citrus reticulata 'Chachi' (Crc), Citrus reticulata 'Dahongpao' (Crd), Citrus reticulata 'Unshiu' (Cru) and Citrus reticulata 'Tangerina' (Crt) in China. Since these four cultivars have great similarities in morphology, reliable methods to differentiate CRP cultivars have rarely been reported. To discriminate the differences of these CRP cultivars, herein an efficient and reliable method by combining metabolomics, DNA barcoding and electronic nose was first established. The hierarchical three-step filtering metabolomics analysis based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) indicated that 9 species-specific chemical markers including 6 flavanone glycosides and 3 polymethoxyflavones could be considered as marker metabolites for discrimination of the geoherb Crc from other cultivars. A total of 19 single nucleotide polymorphism (SNP) sites were found in nuclear internal transcribed spacer 2 (ITS2) of CRP, and three stable SNP sites (33, 128 and 174) in the ITS2 region can distinguish the four CRP cultivars. The electronic nose coupled with chemometrics could also be used to effectively distinguish Crc from other CRP cultivars. Therefore, our results indicated that the integrated method will be an effective strategy for discrimination of similar herbal medicines.


Assuntos
Citrus/classificação , Código de Barras de DNA Taxonômico , Nariz Eletrônico , Metabolômica , Citrus/genética , Citrus/crescimento & desenvolvimento , Citrus/metabolismo , DNA Intergênico/genética
20.
J Bone Miner Metab ; 37(3): 430-440, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30097709

RESUMO

An aggressive proliferation of synoviocytes is the hallmark of rheumatoid arthritis (RA). Emerging evidence shows that inhibiting the NF-κB signaling pathway with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may be a therapeutic approach for controlling inflammatory diseases. In this study, we demonstrated the protective effects of three different 1,25(OH)2D3 concentration on adjuvant-induced arthritis (AA) rats through the NF-κB signaling pathway and their pro-apoptotic roles in cultured adjuvant-induced arthritis synoviocytes (AIASs). AA rats were prepared by injecting complete Freund's adjuvant and independently given daily intraperitoneal injection of 1,25(OH)2D3 at concentrations of 50, 100, and 300 ng/day/kg. Subsequently, AIASs were isolated from the inflamed joints of AA rats to test the effects of 1,25(OH)2D3 on AIASs in vitro. Intraperitoneal injection of 1,25-(OH)2D3 was found to induce a concentration- and time-dependent improvement in relieving the symptoms of AA. We found an increased paw withdrawal thermal latency (PWTL) in the affected paw of AA rats as the concentration of 1,25-(OH)2D3 increased. 1,25-(OH)2D3 treatment reduced levels of inflammatory factors in synovial tissues of AA rats. In the case of cultured AIASs, 1,25-(OH)2D3 was shown to inhibit cell proliferation and induce cell apoptosis in a concentration-dependent manner. Additionally, 1,25-(OH)2D3 inhibited the activation of the NF-κB signaling pathway. In conclusion, our study provides evidence emphasizing that 1,25(OH)2D3 has the potential to attenuate disease severity in RA potentially due to its contributory role in synoviocyte proliferation and apoptosis. The protective role of 1,25(OH)2D3 against RA depends on the NF-κB signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , NF-kappa B/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Sinoviócitos/patologia , Vitamina D/análogos & derivados , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Hiperplasia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA