Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Ethnopharmacol ; 323: 117684, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38171466

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a traditional Chinese ethnobotanical herb. Dendrobine (DNE) has been designated as a quality indicator for DNL in the Chinese Pharmacopoeia. DNE exhibits various pharmacological activities, including the reduction of blood lipids, regulation of blood sugar levels, as well as anti-inflammatory and antioxidant properties. AIM OF THE STUDY: The objective of this study is to explore the impact of DNE on lipid degeneration in nonalcoholic fatty liver disease (NAFLD) liver cells and elucidate its specific mechanism. The findings aim to offer theoretical support for the development of drugs related to DNL. MATERIALS AND METHODS: We utilized male C57BL/6J mice, aged 6 weeks old, to establish a NAFLD model. This model allowed us to assess the impact of DNE on liver pathology and lipid levels in NAFLD mice. We investigated the mechanism of DNE's regulation of lipid metabolism through RNA-seq analysis. Furthermore, a NAFLD model was established using HepG2 cells to further evaluate the impact of DNE on the pathological changes of NAFLD liver cells. The potential mechanism of DNE's improvement was rapidly elucidated using HT-qPCR technology. These results were subsequently validated using mouse liver samples. Following the in vitro activation or inhibition of PPARα function, we observed changes in DNE's ability to ameliorate pathological changes in NAFLD hepatocytes. This mechanism was further verified through RT-qPCR and Western blot analysis. RESULTS: DNE demonstrated a capacity to enhance serum TC, TG, and liver TG levels in mice, concurrently mitigating liver lipid degeneration. RNA-seq analysis unveiled that DNE primarily modulates the expression of genes related to metabolic pathways in mouse liver. Utilizing HT-qPCR technology, it was observed that DNE markedly regulates the expression of genes associated with the PPAR signaling pathway in liver cells. Consistency was observed in the in vivo data, where DNE significantly up-regulated the expression of PPARα mRNA and its protein level in mouse liver. Additionally, the expression of fatty acid metabolism-related genes (ACOX1, CPT2, HMGCS2, LPL), regulated by PPARα, was significantly elevated following DNE treatment. In vitro experiments further demonstrated that DNE notably ameliorated lipid deposition, peroxidation, and inflammation levels in NAFLD hepatocytes, particularly when administered in conjunction with fenofibrate. Notably, the PPARα inhibitor GW6471 attenuated these effects of DNE. CONCLUSIONS: In summary, DNE exerts its influence on the expression of genes associated with downstream fat metabolism by regulating PPARα. This regulatory mechanism enhances liver lipid metabolism, mitigates lipid degeneration in hepatocytes, and ultimately ameliorates the pathological changes in NAFLD hepatocytes.


Assuntos
Alcaloides , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Metabolismo dos Lipídeos , Lipídeos/farmacologia
2.
Exp Ther Med ; 26(3): 438, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614436

RESUMO

Gynostemma pentaphyllum is a traditional medicine used by ethnic minorities in southwest China and gypenosides are currently recognized as essential components of the pharmacological substances of Gynostemma pentaphyllum, which are effective in regulating metabolic syndrome, especially in improving hepatic metabolic disorders. The present study randomly divided C57BL/6J male mice into the normal diet control group (ND), high-fat diet modeling group (HFD) and gypenosides group (GP). Liquid chromatography-mass spectrometry (UPLC-MS) was applied to quantify bile acids in the liver, bile and serum of mice in ND, HFD and GP groups. Liver proteins were extracted for trypsin hydrolysis and analyzed quantitatively using UPLC-MS + MS/MS (timsTOF Pro 2). Total mouse liver RNA was extracted from ND, HFD and GP groups respectively, cDNA sequencing libraries constructed and sequenced using BGISEQ-500 sequencing platform. The expression of key genes Fxr, Shp, Cyp7a1, Cyp8b1, and Abab11 was detected by RT-qPCR. The results showed that gypenosides accelerated free bile acid synthesis by promoting the expression of bile acid synthase CYP7A1 and CYP8B1 genes and proteins and accelerating the secretion of conjugated bile acids from the liver to the bile ducts. GP inhibited the bile acid transporters solute carrier organic anion transporter family member (SLCO) 1A1 and SLCO1A4, reducing the reabsorption of free bile acids and accelerating the excretion of free bile acids from the blood to the kidneys. It also promoted the metabolic enzyme CYP3A11, which accelerated the metabolism and clearance of bile acids, thus maintaining the balance of the bile acid internal environment.

3.
J Anal Methods Chem ; 2022: 8026410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385774

RESUMO

Dendrobium officinale (D. officinale) is a valuable traditional Chinese herbal medicine with high commercial value. In Chinese Pharmacopoeia (Ch.P., 2020 edition), the quality of D. officinale is mainly evaluated by its polysaccharide content. However, varying growth and production conditions, such as cultivation environment, origin, harvesting process, or processing methods, resulting in highly variable yields, quality, and composition. The aim of this study was to investigate whether the content of secondary metabolites in D. officinale from different origins is consistent with the polysaccharide content. The results showed that the polysaccharide content and pass rate were ranked as GX > AH > GZ > YN. Based on the nontargeted metabolomics approach, we searched for differential components in 22 different regions of D. officinale, including amides, bibenzyls, disaccharide, flavonoids, organic nitrogenous compounds, and phenolic glycosides. The overall expression was opposite to the polysaccharide, and the most expressed was YN, followed by GZ, AH, and GX. These results indicated that the current quality standard for evaluating the quality of D. officinale by polysaccharide content alone is imperfect, and small molecule compounds need to be included as quality markers.

4.
Phytochem Anal ; 33(4): 619-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35238089

RESUMO

INTRODUCTION: Alkaloids and glycosides are the active ingredients of the herb Dendrobium nobile, which is used in traditional Chinese medicine. The pharmacological effects of alkaloids include neuroprotective effects and regulatory effects on glucose and lipid metabolism, while glycosides improve the immune system. The pharmacological activities of the above chemical components are significantly different. In practice, the stems of 3-year-old D. nobile are usually used as the main source of Dendrobii Caulis. However, it has not been reported whether this harvesting time is appropriate. OBJECTIVE: The aim of this study was to compare the chemical characteristics of D. nobile in different growth years (1-3 years). METHODS: In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) was employed to analyze the constituents of D. nobile. The relative abundance of each constituent was analyzed with multivariate statistical analyses to screen the characteristic constituents that contributed to the characterization and classification of D. nobile. Dendrobine, a component of D. nobile that is used for quality control according to the Chinese Pharmacopoeia, was assayed by gas chromatography. RESULTS: As a result, 34 characteristic constituents (VIP > 2) were identified or tentatively identified as alkaloids and glycosides based on MS/MS data. Moreover, the content of alkaloids decreased over time, whereas the content of glycosides showed the opposite trend. The absolute quantification of dendrobine was consistent with the metabolomics results. CONCLUSION: Our findings provide valuable information to optimize the harvest period and a reference for the clinical application of D. nobile.


Assuntos
Alcaloides , Dendrobium , Medicamentos de Ervas Chinesas , Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Dendrobium/química , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos , Espectrometria de Massas em Tandem/métodos
5.
Int J Anal Chem ; 2021: 5209618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539789

RESUMO

Qianbai biyan tablet (QT) is a compound prescription of traditional Chinese medicine which is used to treat nasal congestion, rhinitis, and nasosinusitis, with Senecio scandens as its main plant material. Several pyrrolizidine alkaloids (PAs) were reported in Senecio scandens and others of Senecio species. Although Senecio scandens is assigned as the legal plant material of QT, whether replaced use of it by other Senecio plants can bring toxicity is unknown because of the lack of quantitative data about toxic PAs between different Senecio species. In the present study, adonifoline, senkirkine, and another PA presumed as emiline have been identified in QT; however, there was no senecionine detected in all tablets. PA contents in QTs varied in different companies and different batches. Adonifoline existed only in Senecio scandens, and senecionine was detected in all eight Senecio plants investigated in the present study. Data showed that replaced use of Senecio scandens with a low level of senecionine by other Senecio plants such as Senecio vulgaris containing a high level of senecionine is advertised to be forbidden. Data of the present study may be used as a reference to make new drug quality regularity and recommendation guideline for the safety of QT.

6.
F1000Res ; 10: 203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249337

RESUMO

Background: Zuotai (mainly ß-HgS)-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei) is a famous Tibetan medicine for treating cardiovascular and gastrointestinal diseases.  We have shown that 70W protected against CCl 4 hepatotoxicity.  CCl 4 is metabolized via cytochrome P450 (CYP) to produce reactive metabolites. Whether 70W has any effect on CYPs is unknown and such effects should be compared with mercury compounds for safety evaluation.   Methods: Mice were given clinical doses of 70W (0.15-1.5 g/kg, po), Zuotai (30 mg/kg, po), and compared to HgCl 2 (33.6 mg/kg, po) and MeHg (3.1 mg/kg, po) for seven days. Liver RNA and protein were isolated for qPCR and Western-blot analysis. Results: 70W and Zuotai had no effects on hepatic mRNA expression of Cyp1a2, Cyp2b10, Cyp3a11, Cyp4a10 and Cyp7a1, and corresponding nuclear receptors [aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-α (PPARα); farnesoid X receptor (FXR)]. In comparison, HgCl 2 and MeHg increased mRNA expression of Cyp1a2, Cyp2b10, Cyp4a10 and Cyp7a1 except for Cyp3a11, and corresponding nuclear receptors except for PXR. Western-blot confirmed mRNA results, showing increases in CYP1A2, CYP2B1, CYP2E1, CYP4A and CYP7A1 by HgCl 2 and MeHg only, and all treatments had no effects on CYP3A. Conclusions: Zuotai and Zuotai-containing 70W at clinical doses had minimal influence on hepatic CYPs and corresponding nuclear receptors, while HgCl 2 and MeHg produced significant effects.  Thus, the use of total Hg content to evaluate the safety of HgS-containing 70W is inappropriate.


Assuntos
Compostos de Mercúrio , Mercúrio , Compostos de Metilmercúrio , Animais , Cloretos , Sistema Enzimático do Citocromo P-450 , Fígado , Cloreto de Mercúrio , Camundongos
7.
J Ethnopharmacol ; 257: 112839, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32268205

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium Nobile Lindl. (DNL) is one of the central herbs in traditional Chinese medicine which mainly distributes in Guizhou, Yunnan, Guangxi and other sub-tropical areas south of the Yangtze River. In the past decades, it has been used to treat tumors, hyperglycemia, hyperlipidemia, and diseases of the nervous system that may be caused by aging. AIM OF THE REVIEW: The purpose of this review is to summarize the anti-aging information of DNL from the molecular mechanism level, including classic theories related to aging, main chemical components, pharmacological research and anti-aging theory based on traditional Chinese medicine theory, for exploring the future development and clinical treatment. MATERIALS AND METHODS: The information in this paper has been collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, Ph.D. and M.S. dissertations systematically. RESULTS: In this paper, we have reviewed the several mechanisms underlying the potential effects of DNL on the prevention of aging, including the scavenging of free radicals for oxidation, delaying of DNA impairment, inhibition of apoptosis, and alteration of DNA methylation. Together with the theory of telomeres, this review also has summarized recent research progress in the use of DNL and its traditional efficacy. CONCLUSIONS: We conclude that "strengthening Yin and benefiting the spirit", "thickening the intestine and stomach", "lightning the body and prolonging the life-span", and delaying aging, are key effects of DNL that can be used to combat age-related diseases (ARDs) such as Alzheimer's disease, hyperlipidemia, and diabetes. This review provides a reference for future study of ARDs and the clinical application of DNL.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Dendrobium/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos
8.
J Ethnopharmacol ; 241: 111976, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132462

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Accumulation of hepatic lipid promotes systemic metabolic dysfunction and results in fatty liver. Our previous studies have shown that the alkaloids of Dendrobium nobile Lindl. (DNLA) could regulate the lipid metabolism gene expression in livers of mice. However, the protective effects on hepatic lipid homeostasis and the underlying mechanisms are still unclear. MATERIALS AND METHODS: The C57BL/6 male mice were randomly divided into four groups, including control group, model group, DNLA treatment group, and simvastatin positive control group. Mice in the control group and the other three groups were fed with control diet and high fat diet during the full course of this study, respectively. Hepatic lipid accumulation was induced by HFD in mice after 18 weeks of feeding. DNLA (15 mg/kg) and simvastatin (20 mg/kg) were administrated intragastrically in the DNLA treatment group and simvastatin positive control group for another 18 weeks, respectively. HE staining and Oil-Red-O staining of liver tissues were observed. TC and TG levels in liver were assayed. The amount of major bile acids in mice livers were quantified by UPLC-MS. Expression levels of genes were tested by the real-time PCR. RESULTS: The results of HE staining and Oil-Red-O staining showed that DNLA could improve hepatic lipid homeostasis. DNLA significantly decreased liver TC and TG levels in the DNLA group. Moreover, the UPLC-MS analysis showed that DNLA did not only influence the hepatic bile acid quantity but did raise the hydrophilicity. Compared with the model group, DNLA decreased the hepatic levels of several free bile acids, including LCA, DCA, CA, and CDCA, and increased most important taurine-conjugated bile acids levels in liver, including TMCAs, TCDCA, TUDCA, and THDCA. In addition, DNLA also decreased the CA/CDCA ratio. The gene expression levels of Cyp27a1, Cyp3a11, Fxr, and Shp were up-regulated in DNLA treatment group. CONCLUSION: DNLA may improve the hepatic abnormal lipid profile of HFD-fed mice via two pathways: (1) enhancing the taurine-conjugated bile acids which are highly hydrophilic and contribute to the excretion of cholesterol; (2) decreasing the CA/CDCA ratio which is positively related to cholesterol absorption.


Assuntos
Alcaloides/farmacologia , Dendrobium , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Alcaloides/uso terapêutico , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica , Homeostase/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Taurina/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30105069

RESUMO

Gypenosides extracted from Gynostemma pentaphyllum (Thunb.) Makino have significant role in reducing serum lipid level and treating fatty liver diseases, however, without clear mechanism. As gypenosides share the similar core structures with bile acids (the endogenous ligands of nuclear receptor FXR), we hypothesize that gypenosides may improve hypercholesterolemia via FXR-mediated bile acids signaling. The present study was designed to validate the role of gypenosides in reducing levels of serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), as well as in regulating bile acids homeostasis and related gene expression levels. The C57BL/6 male mice were divided into four groups. Mice in groups ND and HFD were fed with normal diet and high fat diet for 38 weeks, respectively. In groups HFD+GP and HFD+ST, mice were fed with high fat diet for 38 weeks and treated with gypenosides and simvastatin (positive control) from weeks 16 to 38, respectively. Serum TC and LDL-C levels were assayed by commercially available kits. Expression levels of genes were tested by the quantitative real-time PCR. The LC-MS/MS was applied to quantify major bile acids in mice livers. Our results showed that gypenosides significantly decreased serum TC and LDL-C levels. The gene expression level of Shp was downregulated while the levels of Cyp7a1, Cyp8b1, Fxr, Lrh1, Jnk1/2, and Erk1/2 were upregulated by gypenosides. Indicated by LC-MS/MS technology, gypenosides increased the hepatic levels of several free bile acids and most taurine-conjugated bile acids while decreasing glycine-conjugated bile acids levels. In addition, gypenosides decreased the CA/CDCA ratio. Gypenosides may improve the abnormal lipid profile of HFD-fed mice via two pathways: (1) enhancing the bile acids biosynthesis from cholesterol; (2) decreasing the CA/CDCA ratio which is positively related to cholesterol absorption.

10.
Neural Regen Res ; 12(7): 1131-1136, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852396

RESUMO

Dendrobium nobile Lindl. alkaloids (DNLA), the active ingredients of a traditional Chinese medicine Dendrobium, have been shown to have anti-oxidative effects, anti-inflammatory action, and protective effect on neurons against oxygen-glucose deprivation. However, it is not clear whether DNLA reduces amyloid-beta (Aß)-induced neuronal injury. In this study, cortical neurons were treated with DNLA at different concentrations (0.025, 0.25, and 2.5 mg/L) for 24 hours, followed by administration of Aß25-35 (10 µM). Aß25-35 treatments increased cell injury as determined by the leakage of lactate dehydrogenase, which was accompanied by chromatin condensation and mitochondrial tumefaction. The damage caused by Aß25-35 on these cellular properties was markedly attenuated when cells were pretreated with DNLA. Treatment with Aß25-35 down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95, all changes were significantly reduced by pretreatment of cells with DNLA. These findings suggest that DNLA reduces the cytotoxicity induced by Aß25-35 in rat primary cultured neurons. The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated, at least in part, through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.

11.
PeerJ ; 4: e2739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994964

RESUMO

BACKGROUND: Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer's disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on ß-amyloid peptide segment 25-35 (Aß25-35)-induced neuron and synaptic loss in mice. METHOD: Aß25-35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. RESULTS: DNLA significantly attenuated Aß25-35-induced spatial learning and memory impairments in mice. DNLA prevented Aß25-35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. CONCLUSIONS: DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aß-induced spatial learning and memory impairment in mice.

12.
Zhongguo Zhong Yao Za Zhi ; 36(24): 3439-43, 2011 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-22368852

RESUMO

OBJECTIVE: To investigate into the method of "multi activity index evaluation and combination optimized of mult-component" for Chinese herbal formulas. METHOD: According to the scheme of uniform experimental design, efficacy experiment, multi index evaluation, least absolute shrinkage, selection operator (LASSO) modeling, evolutionary optimization algorithm, validation experiment, we optimized the combination of Jiangzhi granules based on the activity indexes of blood serum ALT, ALT, AST, TG, TC, HDL, LDL and TG level of liver tissues, ratio of liver tissue to body. RESULT: Analytic hierarchy process (AHP) combining with criteria importance through intercriteria correlation (CRITIC) for multi activity index evaluation was more reasonable and objective, it reflected the information of activity index's order and objective sample data. LASSO algorithm modeling could accurately reflect the relationship between different combination of Jiangzhi granule and the activity comprehensive indexes. The optimized combination of Jiangzhi granule showed better values of the activity comprehensive indexed than the original formula after the validation experiment. CONCLUSION: AHP combining with CRITIC can be used for multi activity index evaluation and LASSO algorithm, it is suitable for combination optimized of Chinese herbal formulas.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Modelos Teóricos , Algoritmos , Química Farmacêutica , Medicamentos de Ervas Chinesas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA