RESUMO
Two-component systems (TCSs), the predominant signal transduction pathways employed by bacteria, play important roles in physiological metabolism in Streptomyces Here, a novel TCS, GluR-GluK (encoded by SCO5778-SCO5779), which is located divergently from the gluABCD operon encoding a glutamate uptake system, was identified as being involved in glutamate sensing and uptake as well as antibiotic biosynthesis in Streptomyces coelicolor Under the condition of minimal medium (MM) supplemented with different concentrations of glutamate, deletion of the gluR-gluK operon (gluR-K) resulted in enhanced actinorhodin (ACT) but reduced undecylprodigiosin (RED) and yellow type I polyketide (yCPK) production, suggesting that GluR-GluK plays a differential role in antibiotic biosynthesis. Furthermore, we found that the response regulator GluR directly promotes the expression of gluABCD under the culture condition of MM with a high concentration of glutamate (75 mM). Using the biolayer interferometry assay, we demonstrated that glutamate acts as the direct signal of the histidine kinase GluK. It was therefore suggested that upon sensing high concentrations of glutamate, GluR-GluK would be activated and thereby facilitate glutamate uptake by increasing gluABCD expression. Finally, we demonstrated that the role of GluR-GluK in antibiotic biosynthesis is independent of its function in glutamate uptake. Considering the wide distribution of the glutamate-sensing (GluR-GluK) and uptake (GluABCD) module in actinobacteria, it could be concluded that the GluR-GluK signal transduction pathway involved in secondary metabolism and glutamate uptake should be highly conserved in this bacterial phylum.IMPORTANCE In this study, a novel two-component system (TCS), GluR-GluK, was identified to be involved in glutamate sensing and uptake as well as antibiotic biosynthesis in Streptomyces coelicolor A possible GluR-GluK working model was proposed. Upon sensing high glutamate concentrations (such as 75 mM), activated GluR-GluK could regulate both glutamate uptake and antibiotic biosynthesis. However, under a culture condition of MM supplemented with low concentrations of glutamate (such as 10 mM), although GluR-GluK is activated, its activity is sufficient only for the regulation of antibiotic biosynthesis. To the best of our knowledge, this is the first report describing a TCS signal transduction pathway for glutamate sensing and uptake in actinobacteria.
Assuntos
Ácido Glutâmico/metabolismo , Histidina Quinase/metabolismo , Transdução de Sinais , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Transporte Biológico , Meios de Cultura/química , Deleção de Genes , Regulação da Expressão Gênica , Histidina Quinase/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Streptomyces coelicolor/genética , Fatores de Transcrição/genéticaRESUMO
UNLABELLED: Pristinamycin I (PI), produced by Streptomyces pristinaespiralis, is a streptogramin type B antibiotic, which contains two proteinogenic and five aproteinogenic amino acid precursors. PI is coproduced with pristinamycin II (PII), a member of streptogramin type A antibiotics. The PI biosynthetic gene cluster has been cloned and characterized. However, thus far little is understood about the regulation of PI biosynthesis. In this study, a TetR family regulator (encoded by SSDG_03033) was identified as playing a positive role in PI biosynthesis. Its homologue, PaaR, from Corynebacterium glutamicum serves as a transcriptional repressor of the paa genes involved in phenylacetic acid (PAA) catabolism. Herein, we also designated the identified regulator as PaaR. Deletion of paaR led to an approximately 70% decrease in PI production but had little effect on PII biosynthesis. Identical to the function of its homologue from C. glutamicum, PaaR is also involved in the suppression of paa expression. Given that phenylacetyl coenzyme A (PA-CoA) is the common intermediate of the PAA catabolic pathway and the biosynthetic pathway of L-phenylglycine (L-Phg), the last amino acid precursor for PI biosynthesis, we proposed that derepression of the transcription of paa genes in a ΔpaaR mutant possibly diverts more PA-CoA to the PAA catabolic pathway, thereby with less PA-CoA metabolic flux toward L-Phg formation, thus resulting in lower PI titers. This hypothesis was verified by the observations that PI production of a ΔpaaR mutant was restored by L-Phg supplementation as well as by deletion of the paaABCDE operon in the ΔpaaR mutant. Altogether, this study provides new insights into the regulation of PI biosynthesis by S. pristinaespiralis. IMPORTANCE: A better understanding of the regulation mechanisms for antibiotic biosynthesis will provide valuable clues for Streptomyces strain improvement. Herein, a TetR family regulator PaaR, which serves as the repressor of the transcription of paa genes involved in phenylacetic acid (PAA) catabolism, was identified as playing a positive role in the regulation of pristinamycin I (PI) by affecting the supply of one of seven amino acid precursors, L-phenylglycine, in Streptomyces pristinaespiralis. To our knowledge, this is the first report describing the interplay between PAA catabolism and antibiotic biosynthesis in Streptomyces strains. Considering that the PAA catabolic pathway and its regulation by PaaR are widespread in antibiotic-producing actinomycetes, it could be suggested that PaaR-dependent regulation of antibiotic biosynthesis might commonly exist.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Reguladores/fisiologia , Pristinamicina/biossíntese , Streptomyces/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Glicina/análogos & derivados , Glicina/metabolismo , Estrutura Molecular , Pristinamicina/química , Pristinamicina/metabolismo , Transcrição GênicaRESUMO
A novel two-component system (TCS) of DraR-K was previously identified as playing differential roles in the biosynthesis of antibiotics (blue-pigmented type II polyketide actinorhodin (ACT), red-pigmented tripyrrole undecylprodigiosin (RED), and yellow-pigmented type I polyketide (yCPK)) in Streptomyces coelicolor M145 under the conditions of minimal medium (MM) supplemented with a high concentration of different nitrogen sources (e.g., 75 mM glutamine). To assess whether DraR-K has more globalized roles, a genome-wide transcriptomic analysis of the parental strain M145 and a ΔdraR-K mutant under the condition of MM supplemented with 75 mM glutamine was performed using DNA microarray analysis combined with real-time reverse transcriptase PCR (RT-qPCR). The analyses showed that deletion of the draR-K genes led to the differential expression not only of the biosynthetic gene clusters of ACT, RED, and yCPK but also of other five secondary metabolite biosynthetic clusters. In addition, a number of primary metabolism-related genes in the ΔdraR-K mutant, such as ureA/B/C/D/G/F, the pstSCAB operon, and the chb gene, exhibited altered expression, which might enable the organism to balance the C/N/P ratio under the condition of a high concentration of glutamine. We also found that the expression of many developmental genes, including ramR, chpA/D/E, and the whiE gene cluster, was affected by the draR-K deletion. Furthermore, the direct role of DraR-K on the transcription of several genes, including chb and pepA/pepA2, was validated using electrophoretic mobility shift assays (EMSAs). In summary, our transcriptomic analyses revealed that DraR-K plays global regulatory roles in the physiological and morphological differentiation of S. coelicolor.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Glutamina/metabolismo , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genéticaRESUMO
The two-component system AfsQ1/Q2 of Streptomyces coelicolor was identified in our previous work as a pleiotropic regulator for antibiotic biosynthesis and morphological differentiation under the condition of a minimal medium supplemented with 75 mM glutamate. In this work, we report the dissection of the mechanism underlying the function of AfsQ1/Q2 on antibiotic production and also the identification of the AfsQ1/Q2 regulon. The results showed that AfsQ1/Q2 stimulated antibiotic ACT, RED and CDA production directly through the pathway-specific activator genes actII-ORF4, redZ and cdaR respectively. In addition, expression of sigQ that encodes a sigma factor and is divergently transcribed from afsQ1 was also subject to direct regulation by AfsQ1/Q2. The precise AfsQ1 binding sites in the upstream regions of these target genes were determined by DNase I footprinting assays coupled with site-directed DNA mutagenesis. By computational prediction and functional analysis, at least 17 new AfsQ1 targets were identified, including pstS gene encoding a high-affinity phosphate-binding protein and two developmental genes whiD, bldM. For the AfsQ1/Q2 regulon, an AfsQ1 binding motif comprising the sequence GTnAC-n(6) -GTnAC has been defined. Interestingly, we found from electrophoretic mobility shift assays and transcriptional analysis that AfsQ1/Q2 can also function as a repressor for nitrogen assimilation, and AfsQ1 can compete with GlnR for the promoter regions of glnA and nirB, suggesting the cross-regulation between AfsQ1/Q2 and GlnR in nitrogen metabolism. These findings suggested that AfsQ1/Q2 is important not only for antibiotic biosynthesis but also in maintaining the metabolic homeostasis of nutrient utilization under the stress of high concentration of glutamate in S. coelicolor.