Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells Dev ; 31(9-10): 258-268, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35403434

RESUMO

Glioblastoma (GBM), the most aggressive primary heterogeneous primary brain tumor, is a glioma subtype that originates from the glial cells of the central nervous system. Glioblastoma stem cells (GSCs), situated at the top of the hierarchy, initiate and maintain the tumor and are largely accountable for GBM resistance to the mainstay treatment and recurrence. The LIM homeobox transcription factor islet 1 (ISL1) induces tumorigenicity in various tumors; however, its function in GSCs has been less reported. We aimed to generate GSCs from surgical specimens of human GBM and investigate the effect of ISL1 knockdown on GSCs. We established patient-derived GSCs, determined cancer stem cell marker expression, and immunostained GSCs to assess cell viability and apoptosis. We demonstrated that ISL1 deletion decreased the GSC viability and proliferation, and upregulated apoptosis. Moreover, we performed enzyme-linked immunosorbent assay and western blotting and found that ISL1 knockdown affected the expression of sonic hedgehog (SHH) and its downstream regulator GLI1, and further validated these results by supplementing the cells with recombinant SHH. Our results suggested that ISL1 played a critical role in regulating GBM growth and that an ISL1/SHH/GLI1 pathway was required for the maintenance of GBM progression and malignancy. The regulation of GSC growth through ISL1 might be a mechanism of interest for future therapeutic studies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Hedgehog , Proteínas com Homeodomínio LIM , Fatores de Transcrição , Proteína GLI1 em Dedos de Zinco , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Hedgehog/genética , Humanos , Proteínas com Homeodomínio LIM/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
2.
Nutrients ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268026

RESUMO

Food fortification and increased vitamin intake have led to higher folic acid (FA) consumption by many pregnant women. We showed that FA-supplemented diet in pregnant mice (fivefold higher FA than the recommended level (5xFASD)) led to hyperactivity-like behavior and memory impairment in pups. Disturbed choline/methyl metabolism and altered placental gene expression were identified. The aim of this study was to examine the impact of 5xFASD on the brain at two developmental stages, postnatal day (P) 30 and embryonic day (E) 17.5. Female C57BL/6 mice were fed a control diet or 5xFASD for 1 month before mating. Diets were maintained throughout the pregnancy and lactation until P30 or during pregnancy until E17.5. The 5xFASD led to sex-specific transcription changes in a P30 cerebral cortex and E17.5 cerebrum, with microarrays showing a total of 1003 and 623 changes, respectively. Enhanced mRNA degradation was observed in E17.5 cerebrum. Expression changes of genes involved in neurotransmission, neuronal growth and development, and angiogenesis were verified by qRT-PCR; 12 and 15 genes were verified at P30 and E17.5, respectively. Hippocampal collagen staining suggested decreased vessel density in FASD male embryos. This study provides insight into the mechanisms of neurobehavioral alterations and highlights potential deleterious consequences of moderate folate oversupplementation during pregnancy.


Assuntos
Ácido Fólico , Placenta , Animais , Suplementos Nutricionais , Feminino , Ácido Fólico/farmacologia , Expressão Gênica , Hipocampo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
3.
Mol Nutr Food Res ; 65(14): e2100197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010503

RESUMO

SCOPE: Many pregnant women have higher folic acid (FA) intake due to food fortification and increased vitamin use. It is reported that diets containing five-fold higher FA than recommended for mice (5xFASD) during pregnancy resulted in methylenetetrahydrofolate reductase (MTHFR) deficiency and altered choline/methyl metabolism, with neurobehavioral abnormalities in newborns. The goal is to determine whether these changes have their origins in the placenta during embryonic development. METHODS AND RESULTS: Female mice are fed control diet or 5xFASD for a month before mating and maintained on these diets until embryonic day 17.5. 5xFASD led to pseudo-MTHFR deficiency in maternal liver and altered choline/methyl metabolites in maternal plasma (increased methyltetrahydrofolate and decreased betaine). Methylation potential (S-adenosylmethionine:S-adenosylhomocysteine ratio) and glycerophosphocholine are decreased in placenta and embryonic liver. Folic acid supplemented diet results in sex-specific transcriptome profiles in placenta, with validation of dietary expression changes of 29 genes involved in angiogenesis, receptor biology or neurodevelopment, and altered methylation of the serotonin receptor 2A gene. CONCLUSION: Moderate increases in folate intake during pregnancy result in placental metabolic and gene expression changes, particularly in angiogenesis, which may contribute to abnormal behavior in pups. These results are relevant for determining a safe upper limit for folate intake during pregnancy.


Assuntos
Ácido Fólico/farmacologia , Homocistinúria/induzido quimicamente , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/induzido quimicamente , Placenta/metabolismo , Fatores Sexuais , Animais , Metilação de DNA , Suplementos Nutricionais , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Ftálicos/sangue , Gravidez , Transtornos Psicóticos , S-Adenosilmetionina/sangue , Transcriptoma/efeitos dos fármacos
4.
Nutrients ; 12(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521649

RESUMO

Fifteen to 20% of pregnant women may exceed the recommended intake of folic acid (FA) by more than four-fold. This excess could compromise neurocognitive and motor development in offspring. Here, we explored the impact of an FA-supplemented diet (5× FASD, containing five-fold higher FA than recommended) during pregnancy on brain function in murine offspring, and elucidated mechanistic changes. We placed female C57BL/6 mice for one month on control diets or 5× FASD before mating. Diets were maintained throughout pregnancy and lactation. Behavioural tests were conducted on 3-week-old pups. Pups and mothers were sacrificed at weaning. Brains and livers were collected to examine choline/methyl metabolites and immunoreactive methylenetetrahydrofolate reductase (MTHFR). 5× FASD led to hyperactivity-like behavior and memory impairment in 3-week-old pups of both sexes. Reduced MTHFR protein in the livers of FASD mothers and male pups resulted in choline/methyl metabolite disruptions in offspring liver (decreased betaine) and brain (decreased glycerophosphocholine and sphingomyelin in male pups, and decreased phosphatidylcholine in both sexes). These results indicate that moderate folate supplementation downregulates MTHFR and alters choline/methyl metabolism, contributing to neurobehavioral alterations. Our findings support the negative impact of high FA on brain development, and may lead to improved guidelines on optimal folate levels during pregnancy.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Ácido Fólico/efeitos adversos , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Recomendações Nutricionais , Caracteres Sexuais , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Troca Materno-Fetal , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/metabolismo , Gravidez , Esfingomielinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA