Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240419

RESUMO

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gossipol , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Gossipol/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Serina-Treonina Quinases TOR , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
2.
Int J Nanomedicine ; 15: 3649-3667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547020

RESUMO

INTRODUCTION: The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. METHODS: We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. RESULTS: We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. DISCUSSION AND PERSPECTIVE: In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.


Assuntos
Encéfalo/patologia , Curcumina/uso terapêutico , Gliose/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuroglia/patologia , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Encéfalo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipossomos , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Neuroglia/efeitos dos fármacos
3.
Nutrients ; 12(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877869

RESUMO

Kuding tea (KT) is a traditional Chinese beverage rich in plant bioactives that may exhibit various health benefits. However, little is known about the safety of KT extract (KTE) when consumed long term at high doses as a dietary supplement. Therefore, in this study, we investigated aspects of the safety of KTE. Male C57BL/6 mice were fed a high-fat, high-fructose, Western-type diet (control) supplemented with either 12.88% γ-cyclodextrin (γCD), 7.12% KTE (comprising 0.15% ursolic acid, UA) encapsulated in 12.88% γCD (KTE-γCD), or 0.15% UA over a 6-week experimental period. The dietary treatments did not affect food intake, body weight or body composition. However, treatment with KTE-γCD, but not γCD and UA, increased liver weight and hepatic fat accumulation, which was accompanied by increased hepatic PPARγ and CD36 mRNA levels. KTE-γCD treatment elevated plasma cholesterol and CYP7A1 mRNA and protein levels compared to those in control mice. KTE-γCD substantially increased the mRNA and protein levels of hepatic CYP3A and GSTA1, which are central to the detoxification of drugs and xenobiotics. Furthermore, we observed a moderate elevation in hepatic CYP3A (5-fold change) and GSTA1 (1.7-fold change) mRNA levels in UA-fed mice. In vitro data collected in HepG2 cells indicated a dose-dependent increase in hepatic cytotoxicity in response to KTE treatment, which may have been partly mediated by UA. Overall, the present data may contribute to the safety assessment of KTE and suggest that KTE encapsulated in γCD affects liver fat storage and the hepatic phase I and phase II responses in mice.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Indução Enzimática/efeitos dos fármacos , Fígado/enzimologia , Extratos Vegetais/farmacologia , Chá/química , Tecido Adiposo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Composição Corporal/efeitos dos fármacos , Camellia sinensis/química , Suplementos Nutricionais , Células Hep G2 , Humanos , Fígado/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Extratos Vegetais/química
4.
J Neuroimmunol ; 323: 78-86, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196838

RESUMO

Honokiol has been used in traditional medicine for the treatment of inflammatory diseases. Activation of glial cells plays an essential role in neurodegenerative disorders. In this study, we show that Honokiol reduces the inflammatory response to LPS of primary cultures of microglia and astrocytes through the inhibition of pro-inflammatory mediators (iNOS, IL-6, IL-1ß and TNF-α) and the simultaneous stimulation of anti-inflammatory cytokines (IL-10). Expression of KLF4 was induced in microglia and astrocytes after treatment with LPS and this response was mitigated by Honokiol. These findings extend our understanding of the anti-inflammatory properties of Honokiol on central glial cells and support its use as a therapeutic compound in neuroinflammatory disorders.


Assuntos
Anti-Inflamatórios/metabolismo , Astrócitos/metabolismo , Compostos de Bifenilo/metabolismo , Mediadores da Inflamação/metabolismo , Lignanas/metabolismo , Microglia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Células Cultivadas , Mediadores da Inflamação/antagonistas & inibidores , Fator 4 Semelhante a Kruppel , Lignanas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
5.
J Nutr ; 145(6): 1218-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926412

RESUMO

BACKGROUND: Growing evidence suggests that disintegrin and metalloprotease (ADAM) 17 (ADAM17) and ADAM10 contribute to the pathogenesis of vascular diseases. ADAM17 promotes inflammatory processes by liberating tumor necrosis factor α, interleukin 6 receptor (IL-6R), and tumor necrosis factor receptor 1 (TNFR1). ADAM17 and ADAM10 modulate vascular permeability by cleaving endothelial adhesion molecules such as junctional adhesion molecule A (JAM-A) and vascular endothelial cadherin (VE-cadherin), respectively. OBJECTIVE: This study was designed to investigate whether a link might exist between the protective effects of fish oil (FO) supplementation against atherosclerosis and ADAM function. METHODS: Male LDL receptor knockout (LDLR(-/-)) mice and male wild-type (WT) mice were fed a Western diet (200 g/kg fat, 1.5 g/kg cholesterol) containing either 20% lard (LDLR(-/-)-lard and WT-lard groups) or 10% lard combined with 10% FO (LDLR(-/-)-FO and WT-FO groups) for 12 wk. Atherosclerotic lesion development and fatty acid composition of liver microsomes were evaluated. ADAM10 and ADAM17 expression was determined by quantitative real-time polymerase chain reaction and immunoblot analyses. Concentrations of soluble ADAM substrates in plasma and liver extracts were measured by ELISA. RESULTS: Diets supplemented with FO markedly reduced development of early atherosclerotic lesions in LDLR(-/-) mice (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 29.6 ± 6.1% vs. 22.5 ± 4.2%, P < 0.05). This was not accompanied by changes in expression of ADAM17 or ADAM10 in the aorta or liver. No dietary effects on circulating TNFR1 (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 1.22 ± 0.23 vs. 1.39 ± 0.28, P > 0.2) or IL-6R (1.06 ± 0.12 vs. 0.98 ± 0.09 fold of WT-lard group, P > 0.1), classical substrates of ADAM17 on macrophages, and neutrophil granulocytes were observed. However, a reduction in atherosclerotic lesions in the LDLR(-/-)-FO group was accompanied by a significant reduction in the circulating endothelial cell adhesion molecules JAM-A (LDLR(-/-)-lard group vs. LDLR(-/-)-FO group mean ± SD: 1.42 ± 0.20 vs. 0.95 ± 0.56 fold of WT-lard group, P < 0.05), intercellular adhesion molecule 1 (1.15 ± 0.14 vs. 0.88 ± 0.17 fold of WT-lard group, P < 0.05), and VE-cadherin (0.88 ± 0.12 vs. 0.72 ± 0.15 fold of WT-lard group, P < 0.05), reflecting reduced ADAM activity in endothelial cells. CONCLUSION: FO exerted an antiatherogenic effect on male LDLR(-/-) mice that was accompanied by a reduced release of ADAM17 and ADAM10 substrates from endothelial cells. It is suggested that FO-decreased ADAM activity contributes to improved endothelial barrier function and thus counteracts intimal lipoprotein insudation and macrophage accumulation.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Proteínas de Membrana/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/genética , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA