Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 6(6): 4740-7, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22631869

RESUMO

The aggregation of misfolded proteins is a common feature underlying a wide range of age-related degenerative disorders, including Alzheimer's and Parkinson's diseases. A key aspect of understanding the molecular origins of these conditions is to define the manner in which specific types of protein aggregates influence disease pathogenesis through their interactions with cells. We demonstrate how selenium-enhanced electron microscopy (SE-EM), combined with tomographic reconstruction methods, can be used to image, here at a resolution of 5-10 nm, the interaction with human macrophage cells of amyloid aggregates formed from Aß(25-36), a fragment of the Aß peptide whose self-assembly is associated with Alzheimer's disease. We find that prefibrillar aggregates and mature fibrils are distributed into distinct subcellular compartments and undergo varying degrees of morphological change over time, observations that shed new light on the origins of their differential toxicity and the mechanisms of their clearance. In addition, the results show that SE-EM provides a powerful and potentially widely applicable means to define the nature and location of protein assemblies in situ and to provide detailed and specific information about their partitioning and processing.


Assuntos
Peptídeos beta-Amiloides/química , Aumento da Imagem/métodos , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Microscopia Eletrônica/métodos , Complexos Multiproteicos/ultraestrutura , Selênio , Células Cultivadas , Meios de Contraste , Humanos , Ligação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA