Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 61(51): 12492-8, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24289038

RESUMO

The octenylsuccinic (OS) substituent distribution in octenylsuccinic anhydride (OSA)-modified normal maize and potato starches with different degrees of subsititution (DS) was studied using confocal laser scanning microscopy (CLSM) and surface gelatinization. The remaining non-gelatinized portions of starch granules after removal of surface-gelatinized starch (remaining granules) were studied with light microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and the level of succinylation. Results showed that greater proportions of the OS groups were present at the periphery than at the core of the granules. However, the granular interior of OS maize starch has higher fluorescent intensity than that of OS potato starch, as shown by CLSM. The DS of OS maize starch degraded less than that of OS potato starch under the same degree of gelatinization. In addition, the characteristic peaks of the remaining OS maize granules in the FTIR were more protruding than that of the OS potato granules after 50% chemical surface gelatinization. The results implied that maize starch displayed much more homogeneous OSA reaction pattern when compared to potato starch. With the special architectures (pinholes and channels) of maize, it is easier to change the location of OS groups than with potato starch by changing reaction conditions or starch pretreatments.


Assuntos
Extratos Vegetais/química , Solanum tuberosum/química , Amido/análogos & derivados , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Zea mays/química
2.
J Agric Food Chem ; 61(19): 4631-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23607452

RESUMO

Starch-zinc complexes were synthesized by reaction of enzyme-modified starch with zinc acetate. The effect of reaction parameters such as hydrolysis rate, reaction temperature, reaction time, pH value, and concentration of zinc acetate on the zinc content and zinc conversion rate was studied. The zinc content and conversion rate of the product prepared under optimal conditions were 100.24 mg/g and 87.06%, respectively. The results of scanning electron microscopy (SEM) demonstrated that the obtained starch-zinc complexes displayed a porous appearance. The results of Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and (13)C cross-polarization/magic-angle spinning nuclear magnetic resonance ((13)C CP/MAS NMR) showed that zinc was mainly coordinated to the oxygen atoms of the glucose unit 6-CH2OH. The formation of starch-zinc complexes was also indirectly confirmed by the results of conductivity measurements. Thermal properties of the complexes were influenced by the zincatation process. This study revealed that nonallergenic starch might be used effectively as a carrier of zinc for zinc supplementation purpose.


Assuntos
Manihot/química , Amido/química , Zinco/química , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Acetato de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA