Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 585932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195238

RESUMO

Mitochondrial energy insufficiency is strongly associated with oocyte activation disorders. Ca2+, especially that in the mitochondrial matrix, plays a pivotal role in mitochondrial energy supplementation, but the underlying mechanisms are still only poorly understood. An encoded mitochondrial matrix Ca2+ probe (Mt-GCaMP6s) was introduced to observe mitochondrial Ca2+ ([Ca2+]m) dynamic changes during oocyte maturation and activation. We found that active mitochondria surrounding the nucleus showed a higher [Ca2+]m than those distributed in the cortex during oocyte maturation. During oocyte partheno-activation, the patterns of Ca2+ dynamic changes were synchronous in the cytoplasm and mitochondria. Such higher concentration of mitochondrial matrix Ca2+ was closely related to the distribution of mitochondrial calcium uptake (MICU) protein. We further showed that higher [Ca2+]m mitochondria around the chromosomes in oocytes might have a potential role in stimulating mitochondrial energy for calmodulin-responsive oocyte spindle formation, while synchronizing Ca2+ functions in the cytoplasm and nuclear area are important for oocyte activation.

2.
J Cell Physiol ; 234(5): 6220-6229, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30317565

RESUMO

Benzo[ghi]perylene (B[ghi]P) is a polycyclic aromatic hydrocarbon widely found in haze. Long-term exposure to humans or animals can cause serious damage to the respiratory system. Melatonin is an endogenous natural hormone synthesized and released by the pineal gland. In this study, we investigated the effects of melatonin on in vitro cultured B[ghi]P-exposed mouse oocytes and the protective roles of melatonin. Our data indicate that B[ghi]P exposure leads to meiotic maturation arrest and reduced ability of sperm binding and parthenogenetic activation. Also, B[ghi]P exposure disrupts actin filament dynamics, spindle assembly, and kinetochore-microtubule attachment stability, which results in oocyte aneuploidy. Simultaneously, B[ghi]P exposure disturbs the distribution of mitochondria, increases the level of oxidative stress, and induces apoptosis of oocytes. Whereas all of these toxic effects of B[ghi]P can be restored after melatonin supplement. In conclusion, our findings validate that melatonin has a certain protective effect on preventing the reduced oocyte quality caused by B[ghi]P exposure during meiotic maturation in mouse oocytes.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Perileno/análogos & derivados , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Perileno/toxicidade
3.
Ying Yong Sheng Tai Xue Bao ; 20(8): 1883-90, 2009 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-19947207

RESUMO

Biochemical and gene expression analysis methods were adopted to investigate the defensive substances and the defense-related genes expression in the roots and leaves of maize (Zea mays L. ) cultivar Gaoyou 115 after underground treatment with 10, 50, 100 and 200 micromol x L(-1) of jasmonic acid (JA) for 3-48 h, aimed to explore the timing- and concentration effect of belowground treatment with JA on the chemical defense response of maize. The chemical defense response of both treated roots and non-treated leaves of Gaoyou 115 was related to the time span of JA treatment and the concentration of JA. After treated with JA for 3-12 h, the gene expression of Bx9, PAL, PR-2a, MPI and FPS in treated roots was directly induced, resulting in an increase of DIMBOA content and a decrease of total phenol content, with the strongest induction effect detected at 100 micromol x L(-1) of JA, followed by at 50 micromol x L(-1), and at 10 micromol x L(-1). The induction effect weakened with time. Underground treatment with JA indirectly affected the chemical defense response of non-treated leaves. After underground treatment with 50 micromol x L(-1) of JA for 3 h, the gene expression of Bx9 and FPS in non-treated leaves was induced, which caused a consequent increase of leaf DIMBOA content. Within 6-24 h of JA treatment, the gene expression of Bx9, PAL, PR-1, MPI and TPS in leaves was enhanced, while the leaf DIMBOA and total phenol contents were declined. For most of the parameters measured, the direct induction effect on roots was much more significant and started earlier than the indirect induction effect on leaves, and an increasing trend was observed in the induction effect with increasing JA concentration.


Assuntos
Benzoxazinas/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Plântula/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Benzoxazinas/análise , Relação Dose-Resposta a Droga , Fenol/análise , Fenol/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fatores de Tempo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
4.
J Chem Ecol ; 33(5): 1089-103, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17415624

RESUMO

Methyl jasmonate (MeJA) and methyl salicylate (MeSA) are important signaling molecules that induce plant defense against insect herbivores and microbial pathogens. We tested the hypothesis that allelopathy is an inducible defense mechanism, and that the JA and SA signaling pathways may activate allelochemicals release. Exogenous application of MeJA and MeSA to rice (Oryza sativa L.) enhanced rice allelopathic potential and led to accumulation of phenolics, an increase in enzymatic activities, and gene transcription of phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H), two key enzymes in the phenylpropanoid pathway. Aqueous extracts of the leaves of rice IAC165, a putative allelopathic variety, treated with MeSA (5 mM) or MeJA (0.05 mM), showed increased inhibitory effects (25 and 21%, respectively) on root growth of barnyardgrass (Echinochloa crus-galli L.), and increased inhibitory effects (18 and 23%, respectively) on shoot growth. Aqueous extracts from leaves of Huajingxian 1 rice, a putative nonallelopathic variety treated with MeJA and MeSA, caused 63 and 24% inhibition of root growth in barnyardgrass seedlings. The root exudates of both IAC165 and Huajingxian 1 plants treated with MeJA and MeSA for 48 hr also showed significant increases in their inhibitory effects on root growth of barnyardgrass seedlings. At the four-leaf stage, levels of 3,4-hydroxybenzoic acid, vanillic acid, coumaric acid, and ferulic acid that accumulated in the leaves were 5.3-, 31.3-, 2.2-, and 1.7-fold higher in response to MeJA exposure, and 3.3-, 13.1-, 2.0-, and 2.2-fold higher in response to MeSA. Treatments of MeSA and MeJA enhanced the PAL activity in the rice leaves up to 52.3 and 80.1%, respectively, whereas C4H activity was increased by 40.2 and 67%. Gene transcription of PAL and C4H in rice leaves significantly increased after the plants were subjected to treatment with MeJA and MeSA. These results suggest that allelopathy may be an active defense mechanism, and that plant signaling compounds are potentially valuable in its regulation.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Feromônios/metabolismo , Salicilatos/farmacologia , Ácidos Carboxílicos/metabolismo , Echinochloa/efeitos dos fármacos , Echinochloa/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas , Fenilalanina Amônia-Liase/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/química , Transcinamato 4-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA