Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA Biol ; 12(1): 82-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826415

RESUMO

BACKGROUND: Berberine (BBR) is a natural alkaloid derived from a traditional Chinese herbal medicine. However, the exact mechanisms underlying the different effects of berberine on MM cells have not been fully elucidated. METHODS: A systematic analysis assay integrated common signaling pathways modulated by the 3 miRNA clusters and mRNAs in MM cells after BBR treatment. The role of the mir-99a ∼ 125b cluster, an important oncomir in MM, was identified by comparing the effects of t-anti-mirs with complete complementary antisense locked nucleic acids (LNAs) against mature mir-125b (anti-mir-125b). RESULTS: Three miRNAs clusters (miR-99a ∼ 125b, miR-17 ∼ 92 and miR-106 ∼ 25) were significantly down-regulated in BBR-treated MM cells and are involved in multiple cancer-related signaling pathways. Furthermore, the top 5 differentially regulated genes, RAC1, NFκB1, MYC, JUN and CCND1 might play key roles in the progression of MM. Systematic integration revealed that 3 common signaling pathways (TP53, Erb and MAPK) link the 3 miRNA clusters and the 5 key mRNAs. Meanwhile, both BBR and seed-targeting t-anti-mir-99a ∼ 125b cluster LNAs significantly induced apoptosis, G2-phase cell cycle arrest and colony inhibition. CONCLUSIONS: our results suggest that BBR suppresses multiple myeloma cells, partly by down-regulating the 3 miRNA clusters and many mRNAs, possibly through TP53, Erb and MAPK signaling pathways. The mir-99a ∼ 125b cluster might be a novel target for MM treatment. These findings provide new mechanistic insight into the anticancer effects of certain traditional Chinese herbal medicine compounds.


Assuntos
Alcaloides/farmacologia , Berberina/farmacologia , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Mieloma Múltiplo/patologia , Oligorribonucleotídeos Antissenso/metabolismo
2.
BMC Syst Biol ; 8: 82, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25000828

RESUMO

BACKGROUND: Berberine is a natural alkaloid derived from a traditional Chinese herbal medicine. It is known to modulate microRNA (miRNA) levels, although the mechanism for this action is unknown. Here, we previously demonstrate that the expression of 87 miRNAs is differentially affected by berberine in multiple myeloma cells. Among 49 miRNAs that are down-regulated, nine act as oncomirs, including miR-21. Integrative analysis showed that 28 of the down-regulated miRNAs participate in tumor protein p53 (TP53) signaling and other cancer pathways. miR-21 is involved in all these pathways, and is one of the most important oncomirs to be affected by berberine in multiple myeloma cells. RESULTS: We confirmed that berberine down-regulated miRNA-21 expression and significantly up-regulated the expression of programmed cell death 4 (PDCD4), a predicted miR-21 target. Luciferase reporter assays confirmed that PDCD4 was directly regulated by miR-21. Bioinformatic analysis revealed that the miR-21 promoter can be targeted by signal transducer and activator of transcription 3 (STAT3). Down-regulation of interleukin 6 (IL6) by berberine might lead to inhibition of miR-21 transcription through STAT3 down-regulation in multiple myeloma. Furthermore, both berberine and seed-targeting anti-miR-21 oligonucleotide induced apoptosis, G2-phase cell cycle arrest and colony inhibition in multiple myeloma cell lines. Depletion of PDCD4 by short interfering RNA could rescue berberine-induced cytotoxicity in multiple myeloma cells. CONCLUSIONS: Our results suggest that berberine suppresses multiple myeloma cell growth, at least in part, by down-regulating miR-21 levels possibly through IL6/STAT3. This led to increased PDCD4 expression, which is likely to result in suppression of the p53 signaling pathway. These findings may also provide new mechanistic insight into the anti-cancer effects of certain compounds in traditional Chinese herbal medicines.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Mieloma Múltiplo/patologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inativação Gênica , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Mieloma Múltiplo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA