Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 2173-2193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617383

RESUMO

The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.

2.
Microbiol Spectr ; 11(4): e0366422, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338348

RESUMO

The pivotal roles of gut microbiota in severe acute pancreatitis-associated acute lung injury (SAP-ALI) are increasingly revealed, and recent discoveries in the gut-lung axis have provided potential approaches for treating SAP-ALI. Qingyi decoction (QYD), a traditional Chinese medicine (TCM), is commonly used in clinical to treat SAP-ALI. However, the underlying mechanisms remain to be fully elucidated. Herein, by using a caerulein plus lipopolysaccharide (LPS)-induced SAP-ALI mice model and antibiotics (Abx) cocktail-induced pseudogermfree mice model, we tried to uncover the roles of the gut microbiota by administration of QYD and explored its possible mechanisms. Immunohistochemical results showed that the severity of SAP-ALI and intestinal barrier functions could be affected by the relative depletion of intestinal bacteria. The composition of gut microbiota was partially recovered after QYD treatment with decreased Firmicutes/Bacteroidetes ratio and increased relative abundance in short-chain fatty acids (SCFAs)-producing bacteria. Correspondingly increased levels of SCFAs (especially propionate and butyrate) in feces, gut, serum, and lungs were observed, generally consistent with changes in microbes. Western-blot analysis and RT-qPCR results indicated that the AMPK/NF-κB/NLRP3 signaling pathway was activated after oral administration of QYD, which was found to be possibly related to the regulatory effects on SCFAs in the intestine and lungs. In conclusion, our study provides new insights into treating SAP-ALI through modulating the gut microbiota and has prospective practical value for clinical use in the future. IMPORTANCE Gut microbiota affects the severity of SAP-ALI and intestinal barrier function. During SAP, a significant increase in the relative abundance of gut pathogens (Escherichia, Enterococcus, Enterobacter, Peptostreptococcus, Helicobacter) was observed. At the same time, QYD treatment decreased pathogenic bacteria and increased the relative abundance of SCFAs-producing bacteria (Bacteroides, Roseburia, Parabacteroides, Prevotella, Akkermansia). In addition, The AMPK/NF-κB/NLRP3 pathway mediated by SCFAs along the gut-lung axis may play an essential role in preventing the pathogenesis of SAP-ALI, which allows for reduced systemic inflammation and restoration of the intestinal barrier.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Pancreatite , Camundongos , Animais , Pancreatite/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP/uso terapêutico , Doença Aguda , Estudos Prospectivos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Ácidos Graxos Voláteis
3.
Oxid Med Cell Longev ; 2023: 5827613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820405

RESUMO

Qingyi decoction (QYD) has anti-inflammatory pharmacological properties and substantial therapeutic benefits on severe acute pancreatitis (SAP) in clinical practice. However, its protective mechanism against SAP-associated acute lung injury (ALI) remains unclear. In this study, we screened the active ingredients of QYD from the perspective of network pharmacology to identify its core targets and signaling pathways against SAP-associated ALI. Rescue experiments were used to determine the relationship between QYD and ferroptosis. Then, metabolomics and 16s rDNA sequencing were used to identify differential metabolites and microbes in lung tissue. Correlation analysis was utilized to explore the relationship between core targets, signaling pathways, metabolic phenotypes, and microbial flora, sorting out the potential molecular network of QYD against SAP-associated lung ALI. Inflammatory damage was caused by SAP in the rat lung. QYD could effectively alleviate lung injury, improve respiratory function, and significantly reduce serum inflammatory factor levels in SAP rats. Network pharmacology and molecular docking identified three key targets: ALDH2, AnxA1, and ICAM-1. Mechanistically, QYD may inhibit ferroptosis by promoting the ALDH2 expression and suppress neutrophil infiltration by blocking the cleavage of intact AnxA1 and downregulating ICAM-1 expression. Ferroptosis activator counteracts the pulmonary protective effect of QYD in SAP rats. In addition, seven significant differential metabolites were identified in lung tissues. QYD relatively improved the lung microbiome's abundance in SAP rats. Further correlation analysis determined the correlation between ferroptosis, differential metabolites, and differential microbes. In this work, the network pharmacology, metabolomics, and 16s rDNA sequencing were integrated to uncover the mechanism of QYD against SAP-associated ALI. This novel integrated method may play an important role in future research on traditional Chinese medicine.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Pancreatite , Ratos , Animais , Pancreatite/tratamento farmacológico , Molécula 1 de Adesão Intercelular , Doença Aguda , Simulação de Acoplamento Molecular , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo
4.
Pharmacol Res ; 182: 106321, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752356

RESUMO

The role of gut microbiota in regulating the intestinal homeostasis, as well as the pathogenesis of severe acute pancreatitis-associated lung injury (PALI) is widely recognized. The bioactive functions of metabolites with small molecule weight and the detail molecular mechanisms of PALI mediated by "gut-lung axis" have gradually raised the attentions of researchers. Several studies have proved that short-chain fatty acids (SCFAs) produced by gut microbiome play crucial roles and varied activities in the process of PALI. However, relevant reviews reporting SCFAs in the involvement of PALI is lacking. In this review, we firstly introduced the synthetic and metabolic pathways of SCFAs, as well as the transport and signal transduction routes in brief. Afterwards, we focused on the possible mechanisms and clues of SCFAs to participate in the fight against PALI which referred to the inhibition of pathogen proliferation, anti-inflammatory effects, enhancement of intestinal barrier functions, and the maintenance and regulation of immune homeostasis via pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In addition, the latest reported pathological and physiological mechanisms of the gut-lung axis involved in PALI were reviewed. Finally, we summarized the potential therapeutic interventions of PALI by targeting SCFAs, including dietary fiber supplementation, direct supplementation of SCFAs/prebiotics/probiotics, and drugs administration, which is expected to provide new sights for clinical use in the future.


Assuntos
Microbioma Gastrointestinal , Lesão Pulmonar , Pancreatite , Doença Aguda , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Pulmão/metabolismo , Pancreatite/tratamento farmacológico
5.
DNA Cell Biol ; 40(10): 1261-1277, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34551268

RESUMO

QKI is a vital regulator in RNA splicing and maturation, but its role in cervical cancer (CC) is little known. In this study, we found that QKI is decreased in human CC, and overexpression of QKI inhibits HeLa cell proliferation and promotes the apoptosis of cancer cells. We identified hundreds of endogenous QKI-regulated alternative splicing events (ASEs) and differentially expressed genes (DEGs) in QKI-overexpressed HeLa cells by RNA-seq and selectively validated their expression by quantitative reverse-transcription polymerase chain reaction. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that QKI-regulated ASEs and DEGs were closely related to cancer, apoptosis, and transcriptional regulatory functions. In short, QKI may affect the occurrence and development of CC by regulating gene expression through AS.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Neoplasias do Colo do Útero/genética , Feminino , Células HeLa , Humanos , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Neoplasias do Colo do Útero/metabolismo
6.
J Cell Mol Med ; 25(4): 1851-1866, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438315

RESUMO

Long non-coding RNAs (lncRNAs) contribute to disease pathogenesis and drug treatment effects. Both emodin and dexamethasone (DEX) have been used for treating severe acute pancreatitis-associated acute lung injury (SAP-ALI). However, lncRNA regulation networks related to SAP-ALI pathogenesis and drug treatment are unreported. In this study, lncRNAs and mRNAs in the lung tissue of SAP-ALI and control rats, with or without drug treatment (emodin or DEX), were assessed by RNA sequencing. Results showed both emodin and DEX were therapeutic for SAP-ALI and that mRNA and lncRNA levels differed between untreated and treated SAP-ALI rats. Gene expression profile relationships for emodin-treated and control rats were higher than DEX-treated and -untreated animals. By comparison of control and SAP-ALI animals, more up-regulated than down-regulated mRNAs and lncRNAs were observed with emodin treatment. For DEX treatment, more down-regulated than up-regulated mRNAs and lncRNAs were observed. Functional analysis demonstrated both up-regulated mRNA and co-expressed genes with up-regulated lncRNAs were enriched in inflammatory and immune response pathways. Further, emodin-associated lncRNAs and mRNAs co-expressed modules were different from those associated with DEX. Quantitative polymerase chain reaction demonstrates selected lncRNA and mRNA co-expressed modules were different in the lung tissue of emodin- and DEX-treated rats. Also, emodin had different effects compared with DEX on co-expression network of lncRNAs Rn60_7_1164.1 and AABR07062477.2 for the blue lncRNA module and Nrp1 for the green mRNA module. In conclusion, this study provides evidence that emodin may be a suitable alternative or complementary medicine for treating SAP-ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Emodina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Pancreatite/complicações , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Biomarcadores , Biópsia , Biologia Computacional/métodos , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ontologia Genética , Mediadores da Inflamação/metabolismo , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA