Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(37): 11603-11612, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083862

RESUMO

Cellulose nanocrystal (CNC) is a sustainable biomaterial that has been used in many aspects of the food industry, but its effect on fat digestion and absorption is still underexplored. In this study, three CNCs were prepared from buckwheat bran. Their physicochemical properties were characterized, based on which the acetic acid-hydrolyzed CNC (ACCNC) with high absorption capacity was selected for the cytotoxicity evaluation and as a possible inhibitor for fat digestion and absorption in vitro and in vivo. ACCNC was proved to be nontoxic in the MTT assay and animal feeding tests. Especially, with the addition of ACCNC, the hydrolysis of fat was significantly reduced during the simulated digestion in vitro. In vivo testing also confirmed that ACCNC intake significantly reduced the elevated triglyceride, body weight, and fat accumulation levels. This study highlights the potential role of ACCNC prepared from buckwheat bran as an inhibitor for fat digestion and absorption.


Assuntos
Fagopyrum , Animais , Materiais Biocompatíveis , Celulose/química , Digestão , Fagopyrum/química , Triglicerídeos
2.
Nutrients ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745260

RESUMO

There is a consensus that ferulic acid (FA), the most prominent phenolic acid in whole grains, displays a protective effect in non-alcoholic fatty liver disease (NAFLD), though its underlying mechanism not fully elucidated. This study aimed to investigate the protective effect of FA on high-fat diet (HFD)-induced NAFLD in mice and its potential mechanism. C57BL/6 mice were divided into the control diet (CON) group, the HFD group, and the treatment (HFD+FA) group, fed with an HFD and FA (100 mg/kg/day) by oral gavage for 12 weeks. Hematoxylin and eosin (H&E) staining and Oil Red O staining were used to evaluate liver tissue pathological changes and lipid accumulation respectively. It was demonstrated that FA supplementation prevented HFD-induced NAFLD, which was evidenced by the decreased accumulation of lipid and hepatic steatosis in the HFD+FA group. Specifically, FA supplementation decreased hepatic triacylglycerol (TG) content by 33.5% (p < 0.01). Metabolic cage studies reveal that FA-treated mice have elevated energy expenditure by 11.5% during dark phases. Mechanistically, FA treatment increases the expression of rate-limiting enzymes of fatty acid oxidation and ketone body biosynthesis CPT1A, ACOX1 and HMGCS2, which are the peroxisome proliferator-activated receptors α (PPARα) targets in liver. In conclusion, FA could effectively prevent HFD-induced NAFLD possibly by activating PPARα to increase energy expenditure and decrease the accumulation of triacylglycerol in the liver.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos Cumáricos , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Ácidos Graxos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA