Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(7): e0007556, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260456

RESUMO

BACKGROUND: Onchocerciasis currently afflicts an estimated 15 million people and is the second leading infectious cause of blindness world-wide. The development of a macrofilaricide to cure the disease has been hindered by the lack of appropriate small laboratory animal models. This study therefore, was aimed at developing and validating the Mongolian gerbil, as an Onchocerca ochengi (the closest in phylogeny to O. volvulus) adult male worm model. METHODOLOGY/PRINCIPAL FINDINGS: Mongolian gerbils (Meriones unguiculatus) were each implanted with 20 O. ochengi male worms (collected from infected cattle), in the peritoneum. Following drug or placebo treatments, the implanted worms were recovered from the animals and analyzed for burden, motility and viability. Worm recovery in control gerbils was on average 35%, with 89% of the worms being 100% motile. Treatment of the gerbils implanted with male worms with flubendazole (FBZ) resulted in a significant reduction (p = 0.0021) in worm burden (6.0% versus 27.8% in the control animals); all recovered worms from the treated group had 0% worm motility versus 91.1% motility in control animals. FBZ treatment had similar results even after four different experiments. Using this model, we tested a related drug, oxfendazole (OFZ), and found it to also significantly (p = 0.0097) affect worm motility (22.7% versus 95.0% in the control group). CONCLUSIONS/SIGNIFICANCE: We have developed and validated a novel gerbil O. ochengi adult male worm model for testing new macrofilaricidal drugs in vivo. It was also used to determine the efficacy of oxfendazole in vivo.


Assuntos
Modelos Animais de Doenças , Filaricidas/uso terapêutico , Gerbillinae/parasitologia , Onchocerca/efeitos dos fármacos , Oncocercose/veterinária , Animais , Benzimidazóis/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Mebendazol/análogos & derivados , Mebendazol/uso terapêutico , Movimento , Oncocercose/parasitologia
2.
PLoS Negl Trop Dis ; 13(1): e0007108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653499

RESUMO

BACKGROUND: The human filarial parasite Onchocerca volvulus is the causative agent of onchocerciasis (river blindness). It causes blindness in 270,000 individuals with an additional 6.5 million suffering from severe skin pathologies. Current international control programs focus on the reduction of microfilaridermia by annually administering ivermectin for more than 20 years with the ultimate goal of blocking of transmission. The adult worms of O. volvulus can live within nodules for over 15 years and actively release microfilariae for the majority of their lifespan. Therefore, protracted treatment courses of ivermectin are required to block transmission and eventually eliminate the disease. To shorten the time to elimination of this disease, drugs that successfully target macrofilariae (adult parasites) are needed. Unfortunately, there is no small animal model for the infection that could be used for discovery and screening of drugs against adult O. volvulus parasites. Here, we present an in vitro culturing system that supports the growth and development of O. volvulus young adult worms from the third-stage (L3) infective stage. METHODOLOGY/PRINCIPAL FINDINGS: In this study we optimized the culturing system by testing several monolayer cell lines to support worm growth and development. We have shown that the optimized culturing system allows for the growth of the L3 worms to L5 and that the L5 mature into young adult worms. Moreover, these young O. volvulus worms were used in preliminary assays to test putative macrofilaricidal drugs and FDA-approved repurposed drugs. CONCLUSION: The culture system we have established for O. volvulus young adult worms offers a promising new platform to advance drug discovery against the human filarial parasite, O. volvulus and thus supports the continuous pursuit for effective macrofilaricidal drugs. However, this in vitro culturing system will have to be further validated for reproducibility before it can be rolled out as a drug screen for decision making in macrofilaricide drug development programs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Filaricidas/farmacologia , Onchocerca volvulus/efeitos dos fármacos , Onchocerca volvulus/crescimento & desenvolvimento , Testes de Sensibilidade Parasitária/métodos , Animais , Feminino , Masculino
3.
PLoS Negl Trop Dis ; 12(10): e0006772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296268

RESUMO

Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.


Assuntos
Antígenos de Helmintos/imunologia , Brugia Malayi/imunologia , Proteínas de Ligação a Ácido Graxo/imunologia , Filariose/prevenção & controle , Proteínas de Ligação ao Retinol/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/química , Dicroísmo Circular , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/química , Feminino , Gerbillinae , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Masculino , Carga Parasitária , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação ao Retinol/química , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/isolamento & purificação , Vitamina A/metabolismo
4.
Expert Rev Vaccines ; 11(12): 1405-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23252385

RESUMO

A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alumínio/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaios Clínicos como Assunto , Humanos , Lipídeo A/administração & dosagem , Fosfatos/administração & dosagem , Estrutura Terciária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA