Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839313

RESUMO

Nephelium hypoleucum Kurz is an evergreen tree in the Sapindaceae family, mostly found in the forests of some Southeast Asia countries, especially Thailand. The lack of biological information regarding this tree has led to inappropriate agricultural management, conservation and utilization. Thus, this study aims to examine the nutritional composition, organic acid and phenolic profiles and in vitro health properties through several key enzyme inhibitions against some civilization diseases including Alzheimer's disease (ß-secretase (BACE-1), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)), obesity (lipase), hypertension (angiotensin-converting enzyme (ACE)) and diabetes (dipeptidyl peptidase-IV (DPP-IV), α-amylase and α-glucosidase) on the aril (flesh) part of N. hypoleucum Kurz fruit. The remaining fruit parts including the pericarp (peel) and seed were also assessed as sources of potential phenolics as well as key enzyme inhibitors. As results, carbohydrate (17.18 g) was found to be a major source of energy (74.80 kcal) in the aril (100 g fresh weight), with trace amounts of protein (0.78 g) and fat (0.32 g). The fruit aril also contained high insoluble dietary fiber (5.02 g) and vitamin C (11.56 mg), while potassium (215.82 mg) was detected as the major mineral. Organic acid profile indicated that the aril was rich in citric acid, while the phenolic profile suggested predominant quercetin and kaempferol. Interestingly, high gallic acid contents were detected in both pericarp and seed, with the latter 3.2-fold higher than the former. The seed also possessed the highest total phenolic content (TPC, 149.45 mg gallic acid equivalent/g dry weight), while total anthocyanin content (TAC, 0.21 mg cyanidin-3-O-glucoside equivalent/g dry weight) was only detected in pericarp. High TPC also led to high enzyme inhibitory activities in seed including BACE-1, AChE, BChE, ACE, DPP-IV and α-glucosidase. Interestingly, aril with the highest α-amylase inhibition suggested strong inhibitory distribution, predominantly from quercetin and kaempferol. Lipase inhibitory activities were only detected in the aril and pericarp, suggesting the biological function of these two phenolics and possibly anthocyanins.


Assuntos
Frutas , Sapindaceae , Frutas/química , Antocianinas/análise , Quempferóis/análise , Quercetina/análise , Acetilcolinesterase , Butirilcolinesterase , alfa-Glucosidases , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Compostos Fitoquímicos/análise , Ácido Gálico/análise , Nutrientes , Lipase , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA