Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 239: 115846, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039873

RESUMO

BACKGROUND: Shouhui Tongbian capsule (SHTB) has been widely used for the treatment of constipation. There are few studies on SHTB at present. The current study aimed to explore the effects of multi-components compatibility of SHTB for efficacy enhancement and toxicity reduction and evaluate its molecular biological mechanisms in the treatment of slow transit constipation (STC). METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to quantify 17 anthraquinone components in different compatible systems of SHTB. Network pharmacological analysis was used to probe the potential mechanisms of SHTB in treating STC. In addition, an animal experiment combined with western blot analysis was performed to further validate the predicted results. RESULTS: After compatibility, the dissolution of 13 components with good effects in treating constipation increased, while the dissolution of 3 components with hepatotoxicity decreased. Overall, 145 common targets of 13 synergistic components and constipation were identified. A synergistic component-target-disease network showed that chrysoobtusin, obtusifolin, emodin, obtusin and 2-hydroxyl emodin-1-methyl ether were the potential key synergistic components. A protein-protein interaction network analysis identified 91 targets, and an analysis of topological characteristics was conducted to confirm the core targets. Gene Ontology function revealed that the 13 synergistic components for the treatment of STC mainly played roles via protein phosphorylation, positive regulation of phosphorylation, phosphotransferase activity, kinase activity and protein kinase activity, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that these components were enriched in pathways in cancer, MAPK signaling pathway, IL-17 signaling pathway, NF-κB signaling pathway, etc. The results of animal experimental validation showed that SHTB significantly reduced the expression levels of p-p38 and p-ERK proteins in the colon tissue of the STC rats. CONCLUSION: This study preliminarily demonstrated that efficacy enhancement and toxicity reduction of SHTB could be achieved after compatibility, which expounded the connotation of compatibility theory of traditional Chinese medicine from the perspective of chemical composition, reflecting the rationality and scientificity of compatibility theory. Meanwhile, the study also revealed the core targets and potential molecular biological mechanisms of SHTB in the treatment of STC, which may serve as a reference for subsequent studies and clinical applications of SHTB.


Assuntos
Medicamentos de Ervas Chinesas , Emodina , Animais , Ratos , Farmacologia em Rede , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Constipação Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
2.
J Pharm Biomed Anal ; 239: 115830, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096633

RESUMO

BACKGROUND: Biyan Qingdu Granula (BYQD) is a traditional Chinese medicine (TCM) formula commonly used for post-radiotherapy treatment of nasopharyngeal carcinoma (NPC). Despite its extensive use, the underlying pharmacological mechanisms have yet to be fully elucidated. METHODS: UPLC/Q-TOF MS was used to comprehensively analyze the chemical composition of BYQD. Additionally, an everted gut sac model, coupled with UPLC/Q-TOF MS, was used to screen and identify the active ingredients. Subsequently, we conducted a network pharmacological analysis to delve into the potential mechanisms of these active ingredients. Molecular docking experiments were also performed to assess the interactions between active ingredients and potential core targets. RESULTS: The findings revealed the identification of 62 identical ingredients upon comparing the sample solution and intestinal absorbed solution of BYQD. We constructed a protein-protein interaction (PPI) network, which led to the identification of five core targets, namely, TP53, STAT3, MAPK1, SRC and AKT1. Through the construction of a drug-active ingredient-intersection target network, we identified Quercetin, Luteolin, Eupatilin, Magnoflorine, Acacetin and other compound as potential active ingredients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that pathways in cancer, PI3K-Akt signaling pathway, lipid and atherosclerosis, proteoglycans in cancer, and the MAPK signaling pathway might play the key roles in the treatment of NPC after radiotherapy using BYQD. Molecular docking results corroborated strong binding activity between the putative core targets and the corresponding key active ingredients. CONCLUSION: This study provides a preliminary revelation of the active ingredients and potential pharmacological mechanisms of BYQD in the post-radiotherapy treatment of NPC. These findings establish a vital theoretical basis and serve as a scientific reference for the future investigating the pharmacological mechanisms and clinical application of BYQD.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Nasofaríngeas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Cromatografia Líquida de Alta Pressão , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/radioterapia , Fosfatidilinositol 3-Quinases , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA