Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035937

RESUMO

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Morus , Camundongos , Animais , Tecido Adiposo Marrom , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Morus/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Estudos Prospectivos , Transdução de Sinais , Tecido Adiposo Branco , Folhas de Planta , Proteína Desacopladora 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
BMC Complement Med Ther ; 23(1): 308, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667364

RESUMO

BACKGROUND: Mulberry (Morus alba L.) leaf, as a medicinal and food homologous traditional Chinese medicine, has a clear therapeutic effect on type 2 diabetes mellitus (T2DM), yet its underlying mechanisms have not been totally clarified. The study aimed to explore the mechanism of mulberry leaf in the treatment of T2DM through tandem mass tag (TMT)-based quantitative proteomics analysis of skeletal muscle. METHODS: The anti-diabetic activity of mulberry leaf extract (MLE) was evaluated by using streptozotocin-induced diabetic rats at a dose of 4.0 g crude drug /kg p.o. daily for 8 weeks. Fasting blood glucose, body weight, food and water intake were monitored at specific intervals, and oral glucose tolerance test and insulin tolerance test were conducted at the 7th and 8th week respectively. At the end of the experiment, levels of glycated hemoglobin A1c, insulin, free fat acid, leptin, adiponectin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol were assessed and the pathological changes of rat skeletal muscle were observed by HE staining. TMT-based quantitative proteomic analysis of skeletal muscle and bioinformatics analysis were performed and differentially expressed proteins (DEPs) were validated by western blot. The interactions between the components of MLE and DEPs were further assessed using molecular docking. RESULTS: After 8 weeks of MLE intervention, the clinical indications of T2DM such as body weight, food and water intake of rats were improved to a certain extent, while insulin sensitivity was increased and glycemic control was improved. Serum lipid profiles were significantly reduced, and the skeletal muscle fiber gap and atrophy were alleviated. Proteomic analysis of skeletal muscle showed that MLE treatment reversed 19 DEPs in T2DM rats, regulated cholesterol metabolism, fat digestion and absorption, vitamin digestion and absorption and ferroptosis signaling pathways. Key differential proteins Apolipoprotein A-1 (ApoA1) and ApoA4 were successfully validated by western blot and exhibited strong binding activity to the MLE's ingredients. CONCLUSIONS: This study first provided skeletal muscle proteomic changes in T2DM rats before and after MLE treatment, which may help us understand the molecular mechanisms, and provide a foundation for developing potential therapeutic targets of anti-T2DM of MLE.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Morus , Animais , Ratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteômica , Insulina , Peso Corporal , HDL-Colesterol , Extratos Vegetais/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35845591

RESUMO

The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.

4.
Phytother Res ; 36(6): 2495-2510, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445769

RESUMO

The activation of thermogenic programs in brown adipose tissue (BAT) and white adipose tissue (WAT) provides a promising approach to increasing energy expenditure during obesity and diabetes treatment. Although evidence has been found that rutin activates BAT against obesity and type 2 diabetes mellitus (T2DM), its potential mechanism is not completely understood. In this study, we focused on the potential modulating effect of rutin on short-chain fatty acids (SCFAs) and the thermogenesis of BAT and WAT, aiming to elucidate the molecular mechanism of rutin in the treatment of obesity and T2DM. The results showed that rutin could significantly reduce the body weight and fasting blood glucose, inhibit fat accumulation, relieve hepatic steatosis and ameliorate the disorder of glycolipid metabolism in db/db mice. Moreover, rutin also increased the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes and proteins in BAT and inguinal WAT (IWAT), indicating that rutin activated BAT and induced browning of IWAT. Importantly, rutin markedly enhanced the concentration of SCFAs (acetate, propionate and butyrate) and SCFA-producing enzymes (acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA (BUT)) in feces of db/db mice. In addition, rutin significantly increased the mRNA expression of monocarboxylate transporter 1 (Mct1), catabolic enzyme acyl-CoA medium-chain synthetase 3 (Acsm3), carnitine palmitoyl transferase 1α (Cpt-1α) and Cpt-1ß genes in BAT and IWAT of db/db mice, which is conducive to inducing adipocyte thermogenesis. In summary, our findings revealed that rutin played a variety of regulatory roles in improving glucose and lipid metabolism disorders, reducing hepatic steatosis, inducing browning of IWAT and activating BAT, which has potential therapeutic significance for the treatment of obesity and T2DM. Mechanistically, rutin activates the thermogenesis of BAT and IWAT, which may be associated with increasing the concentration of SCFAs.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Tecido Adiposo Marrom , Tecido Adiposo Branco , Animais , Diabetes Mellitus Tipo 2/complicações , Metabolismo Energético , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico , Termogênese
5.
Br J Nutr ; 127(6): 810-822, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33971987

RESUMO

The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Morus , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Morus/metabolismo , PPAR alfa/metabolismo , Folhas de Planta , Ratos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA