Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117658, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011477

RESUMO

There are approximately 4 billion tons of uranium in the ocean, which is unmatched by the surface. Nevertheless, it's very challenging to extract uranium from the ocean due to the exceedingly low concentration of uranium in the ocean (about 3.3 µg L-1) as well as high salinity level. Current methods are often limited by selectivity, sustainability, economics, etc. Herein, phosphoric acid group and amidoxime group were grafted to skin collagen fibers through " initiated access" to design a new uranium extraction material, abbreviated as CGPA. Through laboratory simulation experiments, it is concluded that the maximum adsorption capacity of CGPA for uranium reaches 263.86 mg g-1. It has high adsorption, selectivity, and reusability for uranium. In the actual seawater extraction experiment, CGPA obtained 29.64 µg of uranium after extracting 10.0 L of seawater, and the extraction rate was 90.1%. The adsorbent has excellent effects in kinetics, selectivity, extraction capacity, renewability, etc. In the extraction of uranium from seawater, and is an economically feasible and industrially expandable adsorbent.


Assuntos
Urânio , Fosfatos , Biomassa , Água do Mar , Adsorção
2.
Chemosphere ; 164: 304-313, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27592320

RESUMO

The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L-1). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min-1, anode packed density of 400 kg m-3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe2O3) and magnetite (Fe3O4) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater.


Assuntos
Ácido Edético/análise , Ferro/química , Níquel/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Complexos de Coordenação/análise , Técnicas Eletroquímicas , Eletrodos , Compostos Férricos/análise , Óxido Ferroso-Férrico/análise , Resíduos Industriais/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA