RESUMO
Brain metastases occur in up to 25-55% of patients with metastatic HER2-positive breast cancer. Standard treatment has high rates of recurrence or progression, limiting survival and quality of life in most patients. Temozolomide (TMZ) is known to penetrate the blood-brain barrier and is US FDA approved for treatment of glioblastoma. Our group has demonstrated that low doses of TMZ administered in a prophylactic, metronomic fashion can significantly prevent development of brain metastases in murine models of breast cancer. Based on these findings, we initiated a secondary-prevention clinical trial with oral TMZ given to HER2-positive breast cancer patients with brain metastases after recent local treatment in combination with T-DM1 for systemic control of disease. Primary end point is freedom from new brain metastases at 1 year. (NCT03190967).
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/prevenção & controle , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Telomerase/metabolismo , Temozolomida/uso terapêutico , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Neoplasias Encefálicas/terapia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Projetos de Pesquisa , Temozolomida/farmacologiaRESUMO
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of ß1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (ßCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPßCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with ßCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Endocitose/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , alfa-Ciclodextrinas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Transportador 1 de Cassete de Ligação de ATP/genética , Aciltransferases/genética , Adenosina Trifosfatases/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Monoéster Fosfórico Hidrolases/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , alfa-Ciclodextrinas/metabolismoRESUMO
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterized by constitutive activation of extracellular signal-regulated kinase (ERK). Genomic characterization has identified activating point mutations including mutually exclusive BRAFV600E and activating MAP2K1 mutations to be responsible for ERK activation in a majority of pediatric LCH patients. Here, we report the discovery of a novel BRAF kinase fusion, PACSIN2-BRAF, in a child with multisystem LCH. This is the second reported case of an activating BRAF kinase fusion and indicates a recurrent pathologic mechanism. Genomic evaluation for activating kinase fusions should be strongly considered in pediatric LCH patients lacking more common mutations.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , MAP Quinases Reguladas por Sinal Extracelular , Histiocitose de Células de Langerhans/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Criança , Ativação Enzimática/genética , Humanos , MasculinoRESUMO
PURPOSE: We previously reported excellent local control for treating medulloblastoma with a limited boost to the tumor bed. In order to decrease ototoxicity, we subsequently implemented a tumor-bed boost using intensity-modulated radiation therapy (IMRT), the clinical results of which we report here. PATIENTS AND METHODS: A total of 33 patients with newly diagnosed medulloblastoma, 25 with standard risk, and 8 with high risk, were treated on an IMRT tumor-bed boost following craniospinal irradiation (CSI). Six standard-risk patients were treated with an institutional protocol with 18 Gy CSI in conjunction with intrathecal iodine-131-labeled monoclonal antibody. The majority of patients received concurrent vincristine and standard adjuvant chemotherapy. Pure-tone audiograms were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. RESULTS: Median age was 9 years old (range, 4-46 years old). Median follow-up was 63 months. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) rates for standard-risk patients who received 23.4 or 36 Gy CSI (not including those who received 18 Gy CSI with radioimmunotherapy) were 81.4% and 88.4%, respectively, at 5 years; 5-year PFS and OS rates for high-risk patients were both 87.5%. There were no isolated posterior fossa failures outside of the boost volume. Posttreatment audiograms were available for 31 patients, of whom 6%, at a median follow-up of 19 months, had developed Grade 3 hearing loss. CONCLUSION: An IMRT tumor-bed boost results in excellent local control while delivering a low mean dose to the cochlea, resulting in a low rate of ototoxicity.