Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7967): 974-980, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258677

RESUMO

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Assuntos
Oceanos e Mares , Fósforo , Água do Mar , Atmosfera/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Sedimentos Geológicos/química , História Antiga , Hipóxia/metabolismo , Oxigênio/análise , Oxigênio/história , Oxigênio/metabolismo , Fósforo/análise , Fósforo/história , Fósforo/metabolismo , Água do Mar/química , Sulfatos/metabolismo , Carbonatos/análise , Carbonatos/metabolismo , Oxirredução
2.
BMJ Open Respir Res ; 7(1)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32079607

RESUMO

OBJECTIVES: To determine if urinary biomarkers of effect and potential harm are elevated in electronic cigarette users compared with non-smokers and if elevation correlates with increased concentrations of metals in urine. STUDY DESIGN AND SETTING: This was a cross-sectional study of biomarkers of exposure, effect and potential harm in urine from non-smokers (n=20), electronic cigarette users (n=20) and cigarette smokers (n=13). Participant's screening and urine collection were performed at the Roswell Park Comprehensive Cancer Center, and biomarker analysis and metal analysis were performed at the University of California, Riverside. RESULTS: Metallothionein was significantly elevated in the electronic cigarette group (3761±3932 pg/mg) compared with the non-smokers (1129±1294 pg/mg, p=0.05). 8-OHdG (8-hydroxy-2'-deoxyguanosine) was significantly elevated in electronic cigarette users (442.8±300.7 ng/mg) versus non-smokers (221.6±157.8 ng/mg, p=0.01). 8-Isoprostane showed a significant increase in electronic cigarette users (750.8±433 pg/mg) versus non-smokers (411.2±287.4 pg/mg, p=0.03). Linear regression analysis in the electronic cigarette group showed a significant correlation between cotinine and total metal concentration; total metal concentration and metallothionein; cotinine and oxidative DNA damage; and total metal concentration and oxidative DNA damage. Zinc was significantly elevated in the electronic cigarette users (584.5±826.6 µg/g) compared with non-smokers (413.6±233.7 µg/g, p=0.03). Linear regression analysis showed a significant correlation between urinary zinc concentration and 8-OHdG in the electronic cigarette users. CONCLUSIONS: This study is the first to investigate biomarkers of potential harm and effect in electronic cigarette users and to show a linkage to metal exposure. The biomarker levels in electronic cigarette users were similar to (and not lower than) cigarette smokers. In electronic cigarette users, there was a link to elevated total metal exposure and oxidative DNA damage. Specifically, our results demonstrate that zinc concentration was correlated to oxidative DNA damage.


Assuntos
Biomarcadores/urina , Exposição por Inalação/análise , Vaping/urina , Adulto , Idoso , Estudos de Casos e Controles , Cotinina/urina , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Masculino , Metais/urina , Pessoa de Meia-Idade , Adulto Jovem
3.
Nature ; 541(7637): 386-389, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28002400

RESUMO

The macronutrient phosphorus is thought to limit primary productivity in the oceans on geological timescales. Although there has been a sustained effort to reconstruct the dynamics of the phosphorus cycle over the past 3.5 billion years, it remains uncertain whether phosphorus limitation persisted throughout Earth's history and therefore whether the phosphorus cycle has consistently modulated biospheric productivity and ocean-atmosphere oxygen levels over time. Here we present a compilation of phosphorus abundances in marine sedimentary rocks spanning the past 3.5 billion years. We find evidence for relatively low authigenic phosphorus burial in shallow marine environments until about 800 to 700 million years ago. Our interpretation of the database leads us to propose that limited marginal phosphorus burial before that time was linked to phosphorus biolimitation, resulting in elemental stoichiometries in primary producers that diverged strongly from the Redfield ratio (the atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton). We place our phosphorus record in a quantitative biogeochemical model framework and find that a combination of enhanced phosphorus scavenging in anoxic, iron-rich oceans and a nutrient-based bistability in atmospheric oxygen levels could have resulted in a stable low-oxygen world. The combination of these factors may explain the protracted oxygenation of Earth's surface over the last 3.5 billion years of Earth history. However, our analysis also suggests that a fundamental shift in the phosphorus cycle may have occurred during the late Proterozoic eon (between 800 and 635 million years ago), coincident with a previously inferred shift in marine redox states, severe perturbations to Earth's climate system, and the emergence of animals.


Assuntos
Evolução Biológica , Fósforo/metabolismo , Animais , Atmosfera/química , Carbono/metabolismo , Planeta Terra , Sedimentos Geológicos/química , História Antiga , Ferro/análise , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fósforo/história , Água do Mar/química
4.
Nature ; 489(7417): 546-9, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23018964

RESUMO

Metazoans are likely to have their roots in the Cryogenian period, but there is a marked increase in the appearance of novel animal and algae fossils shortly after the termination of the late Cryogenian (Marinoan) glaciation about 635 million years ago. It has been suggested that an oxygenation event in the wake of the severe Marinoan glaciation was the driving factor behind this early diversification of metazoans and the shift in ecosystem complexity. But there is little evidence for an increase in oceanic or atmospheric oxygen following the Marinoan glaciation, or for a direct link between early animal evolution and redox conditions in general. Models linking trends in early biological evolution to shifts in Earth system processes thus remain controversial. Here we report geochemical data from early Ediacaran organic-rich black shales (∼635-630 million years old) of the basal Doushantuo Formation in South China. High enrichments of molybdenum and vanadium and low pyrite sulphur isotope values (Δ(34)S values ≥65 per mil) in these shales record expansion of the oceanic inventory of redox-sensitive metals and the growth of the marine sulphate reservoir in response to a widely oxygenated ocean. The data provide evidence for an early Ediacaran oxygenation event, which pre-dates the previous estimates for post-Marinoan oxygenation by more than 50 million years. Our findings seem to support a link between the most severe glaciations in Earth's history, the oxygenation of the Earth's surface environments, and the earliest diversification of animals.


Assuntos
Evolução Biológica , Camada de Gelo , Oxigênio/análise , Água do Mar/química , Animais , Atmosfera/química , Biodiversidade , China , Fósseis , Sedimentos Geológicos/química , História Antiga , Ferro/análise , Ferro/química , Molibdênio/análise , Oceanos e Mares , Oxirredução , Oxigênio/metabolismo , Sulfetos/análise , Sulfetos/química , Isótopos de Enxofre , Oligoelementos/análise , Oligoelementos/química , Vanádio/análise
5.
Nature ; 478(7369): 369-73, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012395

RESUMO

The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.


Assuntos
Bactérias Aeróbias/metabolismo , Cromo/química , Sedimentos Geológicos/química , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Cromo/análise , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Ferro/química , Rios , Água do Mar/química , Fatores de Tempo
6.
Nature ; 469(7328): 80-3, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21209662

RESUMO

Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.


Assuntos
Sedimentos Geológicos/química , Oxigênio/análise , Água do Mar/química , Sulfetos/análise , Animais , Evolução Biológica , Ciclo do Carbono , Isótopos de Carbono/análise , Carbonatos/análise , Extinção Biológica , Fósseis , História Antiga , Ferro/análise , Ferro/química , Molibdênio/análise , Molibdênio/química , Oceanos e Mares , Oxirredução , Sulfetos/química , Isótopos de Enxofre/análise , Suécia
7.
Nature ; 467(7319): 1088-90, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20981096

RESUMO

Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.


Assuntos
Organismos Aquáticos/metabolismo , Evolução Biológica , Fosfatos/metabolismo , Animais , Atmosfera/química , Compostos Férricos/análise , Compostos Férricos/metabolismo , Sedimentos Geológicos/química , História Antiga , Camada de Gelo , Ferro/análise , Ferro/metabolismo , Biologia Marinha , Oceanos e Mares , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Fosfatos/análise , Fósforo/análise , Fósforo/metabolismo , Água do Mar/química , Dióxido de Silício/análise , Dióxido de Silício/metabolismo
8.
Science ; 317(5846): 1903-6, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17901330

RESUMO

High-resolution chemostratigraphy reveals an episode of enrichment of the redox-sensitive transition metals molybdenum and rhenium in the late Archean Mount McRae Shale in Western Australia. Correlations with organic carbon indicate that these metals were derived from contemporaneous seawater. Rhenium/osmium geochronology demonstrates that the enrichment is a primary sedimentary feature dating to 2501 +/- 8 million years ago (Ma). Molybdenum and rhenium were probably supplied to Archean oceans by oxidative weathering of crustal sulfide minerals. These findings point to the presence of small amounts of O2 in the environment more than 50 million years before the start of the Great Oxidation Event.


Assuntos
Sedimentos Geológicos/química , Oxigênio , Austrália , Isótopos/análise , Molibdênio/análise , Oceanos e Mares , Osmio/análise , Oxirredução , Oxigênio/análise , Rênio/análise , Água do Mar/química , Enxofre/análise , Isótopos de Enxofre/análise , Temperatura , Urânio/análise
9.
Appl Environ Microbiol ; 71(4): 2106-12, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15812044

RESUMO

White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 mum in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1omega7c/t (67%), 18:1omega7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The delta13C value of total biomass was -28.6 per thousand; those of individual fatty acids were -29.4 to -33.7 per thousand. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have delta13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.


Assuntos
Isótopos de Carbono/metabolismo , Metabolismo dos Lipídeos , Thiotrichaceae/classificação , DNA Ribossômico/análise , Eletroforese/métodos , Gases/metabolismo , Sedimentos Geológicos/microbiologia , Microscopia Confocal , Petróleo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfetos/metabolismo , Thiotrichaceae/genética , Thiotrichaceae/crescimento & desenvolvimento , Thiotrichaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA