Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647446

RESUMO

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Assuntos
Leucemia Mieloide Aguda , Fotoquimioterapia , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Camundongos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Nutr Metab (Lond) ; 21(1): 12, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459503

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is related to metabolic dysfunction and is characterized by excess fat storage in the liver. Several studies have indicated that glutamine could be closely associated with lipid metabolism disturbances because of its important role in intermediary metabolism. However, the effect of glutamine supplementation on MAFLD progression remains unclear. Here, we used a high-fat diet (HFD)-induced MAFLD C57BL/6 mouse model, and glutamine was supplied in the drinking water at different time points for MAFLD prevention and reversal studies. A MAFLD prevention study was performed by feeding mice an HFD concomitant with 4% glutamine treatment for 24 weeks, whereas the MAFLD reversal study was performed based on 4% glutamine treatment for 13 weeks after feeding mice an HFD for 10 weeks. In the prevention study, glutamine treatment ameliorated serum lipid storage, hepatic lipid injury, and oxidative stress in HFD-induced obese mice, although glutamine supplementation did not affect body weight, glucose homeostasis, energy expenditure, and mitochondrial function. In the MAFLD reversal study, there were no noticeable changes in the basic physiological phenotype and hepatic lipid metabolism. In summary, glutamine might prevent, but not reverse, HFD-induced MAFLD in mice, suggesting that a cautious attitude is required regarding its use for MAFLD treatment.

3.
Acta Pharmacol Sin ; 40(7): 938-948, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30560903

RESUMO

L-Carnosine (ß-alanyl-L-histidine) is a naturally occurring dipeptide distributed in various organs of mammalians. We previously showed that carnosine inhibited proliferation of human gastric cancer cells through targeting both mitochondrial bioenergetics and glycolysis pathway. But the mechanism underlying carnosine action on mitochondrial bioenergetics of tumor cells remains unclear. In the current study we investigated the effect of carnosine on the growth of human gastric cancer SGC-7901 cells in vitro and in vivo. We firstly showed that hydrolysis of carnosine was not a prerequisite for its anti-gastric cancer effect. Treatment of SGC-7901 cells with carnosine (20 mmol/L) significantly decreased the activities of mitochondrial respiratory chain complexes I-IV and mitochondrial ATP production, and downregulated 13 proteins involved in mitochondrial bioenergetics. Furthermore, carnosine treatment significantly suppressed the phosphorylation of Akt, while inhibition of Akt activation with GSK690693 significantly reduced the localization of prohibitin-1 (PHB-1) in the mitochondria of SGC-7901 and BGC-823 cells. In addition, we showed that silencing of PHB-1 gene with shRNA markedly reduced the mitochondrial PHB-1 in SGC-7901 cells, and significantly decreased the colony formation capacity and growth rate of the cells. In SGC-7901 cell xenograft nude mice, administration of carnosine (250 mg kg/d, ip, for 3 weeks) significantly inhibited the tumor growth and decreased the expression of mitochondrial PHB-1 in tumor tissue. Taken together, these results suggest that carnosine may act on multiple mitochondrial proteins to down-regulate mitochondrial bioenergetics and then to inhibit the growth and proliferation of SGC-7901 and BGC-823 cells.


Assuntos
Antineoplásicos/uso terapêutico , Carnosina/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Carnosina/farmacologia , Linhagem Celular Tumoral , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Proibitinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Death Dis ; 9(2): 161, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415987

RESUMO

HSP60 is a mitochondrial localized quality control protein responsible for maintaining mitochondrial function. Although HSP60 is considered both a tumor suppressor and promoter in different types of cancer, the role of HSP60 in human pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, we demonstrated that HSP60 was aberrantly expressed in human pancreatic cancer tissues and cell lines. Analysis of the Cancer Genome Atlas database revealed that HSP60 expression is positively correlated with pancreatic cancer. Further, knockdown of HSP60 attenuated pancreatic ductal cancer cell proliferation and migration/invasion, whereas ectopic expression of HSP60 increased tumorigenesis. Using an in vivo tumorigenicity assay, we confirmed that HSP60 promoted the growth of pancreatic ductal cancer cells. Functional analyses demonstrated that HSP60 plays a key role in the regulation of mitochondrial function. Mechanistically, both HSP60 knockdown and oxidative phosphorylation (OXPHOS) inhibition by metformin decreased Erk1/2 phosphorylation and induced apoptosis and cell cycle arrest, whereas Erk1/2 reactivation with EGF promoted cell proliferation. Intriguingly, in vitro ATP supplementation partially restored Erk1/2 phosphorylation and promoted proliferation in PDAC cells with HSP60 knockdown and OXPHOS inhibition. These results suggest that mitochondrial ATP is an important sensor of Erk1/2 regulated apoptosis and the cell cycle in PDAC cells. Thus, our findings indicate for the first time that HSP60 may serve as a novel diagnostic target of human pancreatic cancer, and that inhibition of mitochondrial function using drugs such as metformin may be a beneficial therapeutic strategy targeting pancreatic cancer cells with aberrant function of the HSP60/OXPHOS/Erk1/2 phosphorylation axis.


Assuntos
Chaperonina 60/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Metformina/administração & dosagem , Metformina/farmacologia , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
5.
Integr Cancer Ther ; 17(1): 80-91, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008780

RESUMO

Carnosine has been demonstrated to play an antitumorigenic role in certain types of cancer. However, its underlying mechanism is unclear. In this study, the roles of carnosine in cell proliferation and its underlying mechanism were investigated in the cultured human cervical gland carcinoma cells HeLa and cervical squamous carcinoma cells SiHa. The results showed that carnosine exerted a significant inhibitory effect on the proliferation of HeLa cells, whereas its inhibitory action on the proliferation of SiHa cells was much weaker. Carnosine decreased the ATP content through inhibiting both mitochondrial respiration and glycolysis pathways in cultured HeLa cells but not SiHa cells. Carnosine reduced the activities of isocitrate dehydrogenase and malate dehydrogenase in TCA (tricarboxylic acid) cycle and the activities of mitochondrial electron transport chain complex I, II, III, and IV in HeLa cells but not SiHa cells. Carnosine also decreased the mRNA and protein expression levels of ClpP, which plays a key role in maintaining the mitochondrial function in HeLa cells. In addition, carnosine induced G1 arrest by inhibiting the G1-S phase transition in both HeLa and SiHa cells. Taken together, these findings suggest that carnosine has a strong inhibitory action on the proliferation of human cervical gland carcinoma cells rather than cervical squamous carcinoma cells. Mitochondrial bioenergetics and glycolysis pathways and cell cycle may be involved in the carnosine action on the cell proliferation in cultured human cervical gland carcinoma cells HeLa.


Assuntos
Antineoplásicos/farmacologia , Carnosina/farmacologia , Ciclo Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias do Colo do Útero/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Células HeLa/patologia , Células HeLa/fisiologia , Humanos , Mitocôndrias/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/fisiopatologia
6.
Oncotarget ; 8(66): 110576-110591, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299170

RESUMO

Marsdenia tenacissimae extraction (MTE), a traditional herbal medicine, has exhibited anti-tumor effects on a variety of cancers. However, its effectiveness and the mechanism of action in Hepatocellular carcinoma (HCC) has not been fully understood. In the present study, we demonstrate that C21 steroid-enriched fraction from MTE, which contains five main C21 steroids (FR5) exhibits obvious pharmacological activities on HCC cells in vitro and in vivo. FR5 induces apoptosis and inhibits proliferation and migration of HepG2 and Bel7402 cells in a dose and time dependent manner. Furthermore, in HCC cells, we found that FR5 inhibits Hippo pathway, leading to inactivation of YAP and increase of PTEN. Enhanced PTEN results in the inhibition of PI3K/AKT signaling pathway, inhibiting cell proliferation by FR5 and FR5-induced apoptosis. Moreover, it was proved that FR5 treatment could inhibit tumor growth in a HCC xenograft mouse model, and immunohistochemistry results showed FR5 treatment resulted in down-regulation of Bcl-2 and YAP, and up-regulation of PTEN and PI3K. Taken together, we found that FR5 effectively inhibits proliferation and induces apoptosis of HCC cells through coordinated inhibition of YAP in the Hippo pathway and AKT in the PI3K-PTEN-mTOR pathway, and suggest FR5 as a potential therapy for HCC.

7.
Brain Res Bull ; 124: 76-84, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27040711

RESUMO

Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection.


Assuntos
Astrócitos/efeitos dos fármacos , Carnosina/farmacologia , Hipóxia Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Glucose/deficiência , Ácido Glutâmico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
8.
Chin J Nat Med ; 14(12): 922-930, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28262119

RESUMO

Marsdeniae tenacissimae extract (MTE), commonly known as Xiao-Ai-Ping in China, is a traditional Chinese herb medicine capable of inhibiting proliferation and metastasis and boosting apoptosis in various cancer cells. However, little is known about the contribution of MTE towards tumor angiogenesis and the underlying mechanism. The present study aimed to evaluate the effects of MTE on the proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs) and the molecular mechanism. 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt (MTS) and PI-stained flow cytometry assays revealed that MTE dose-dependently reduced the proliferation of HUVECs by arresting cell cycle at S phase (P < 0.05). Annexin V-FITC/PI-stained flow cytometry confirmed that MTE (160 µL·L-1) enhanced the apoptosis of HUVECs significantly (P < 0.001). Real-time quantitative RT-PCR and Western blot analyses showed an increase in Bax expression and a sharply decline in Bcl-2 expression; caspase-3 was activated simultaneously in a dose-dependent manner (P < 0.05). Further study observed the dose-dependent down-regulation of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2), P2Y6 receptor (P2Y6R), and chemokine (C-C motif) ligand 2 (CCL-2), along with the activation of PKC Δ and up-regulation of p53 in a dose-dependent manner in MTE-treated selected cells (P < 0.05). Collectively, the results from the present study suggested that MTE suppressed the proliferation by attenuating CCL-2-mediated VEGF/VEGFR2 interactions and promoted the apoptosis through PKCΔ-induced p53-dependent mitochondrial pathway in HUVECs, supporting that MTE may be developed as a potent anti-cancer medicine.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Marsdenia/química , Extratos Vegetais/farmacologia , Transdução de Sinais , Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA