Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Nat Med ; 21(11): 842-851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035939

RESUMO

Cancer stands as one of the predominant causes of mortality globally, necessitating ongoing efforts to develop innovative therapeutics. Historically, natural products have been foundational in the quest for anticancer agents. Bulbocodin D (BD) and Bulbocodin C (BC), two bibenzyls derived from Pleione bulbocodioides (Franch.) Rolfe, have demonstrated notable in vitro anticancer activity. In human lung cancer A549 cells, the IC50s for BD and BC were 11.63 and 11.71 µmol·L-1, respectively. BD triggered apoptosis, as evidenced by an upsurge in Annexin V-positive cells and elevated protein expression of cleaved-PARP in cancer cells. Furthermore, BD and BC markedly inhibited the migratory and invasive potentials of A549 cells. The altered genes identified through RNA-sequencing analysis were integrated into the CMap dataset, suggesting BD's role as a potential signal transducer and activator of transcription 3 (STAT3) inhibitor. SwissDock and MOE analyses further revealed that both BD and BC exhibited a commendable binding affinity with STAT3. Additionally, a surface plasmon resonance assay confirmed the direct binding affinity between these compounds and STAT3. Notably, treatment with either BD or BC led to a significant reduction in p-STAT3 (Tyr 705) protein levels, regardless of interleukin-6 stimulation in A549 cells. In addition, the extracellular signal-regulated kinase (ERK) was activated after BD or BC treatment. An enhancement in cancer cell mortality was observed upon combined treatment of BD and U0126, the MEK1/2 inhibitor. In conclusion, BD and BC emerge as promising novel STAT3 inhibitors with potential implications in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/química , Células A549 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
2.
Med Oncol ; 40(7): 211, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347364

RESUMO

Traditional Chinese medicine (TCM) has been widely used for cancer treatment. Identification of anti-cancer targets of TCM is the first and principal step in discovering molecular mechanisms of TCM as well as obtaining novel targets for cancer therapy. In this study, glycogen phosphorylase L (PYGL) was identified as one of the targeted proteins for several TCMs and was upregulated in various cancer types. The expression level of PYGL was positively correlated with the stage of lung cancer and the poor prognosis of patients. Meanwhile, knockdown of PYGL significantly inhibited proliferation and migration in lung cancer cells. In addition, PYGL was associated with spindle, kinetochore, and microtubule, the cellular components that are closely related to mitosis, in lung cancer. Moreover, PYGL was more susceptible to be upregulated by 144 mutated genes. Taken together, PYGL is a potential target for lung cancer treatment and its molecular mechanism probably influences the mitotic function of cells by regulating energy metabolism.


Assuntos
Glicogênio Fosforilase , Neoplasias Pulmonares , Humanos , Glicogênio Fosforilase/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
3.
Dis Markers ; 2022: 4399334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899176

RESUMO

Evodiae fructus (EF) is a traditional Chinese medicine which is widely used for the treatment of obesity, inflammation, cardiovascular disease, and diseases of the central nervous system. Recent studies have demonstrated the anticancer property of EF, but the active compounds of EF against prostate cancer and its underlying mechanism remain unknown. In this study, a network pharmacology-based approach was used to explore the multiple ingredients and targets of EF. Through protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the potential targets and corresponding ingredients of EF against prostate cancer cells were obtained. CCK8 and colony formation assays were performed to evaluate the antiproliferative effect of the active compounds on DU145 cells. Cell cycle analysis, Annexin V-FITC/PI staining assay, and Hoechst 33258 staining assay were used to explore the way of evodiamine-induced cell death. The capacities of cell migration after evodiamine treatment were evaluated by wound-healing assay. PharmMapper database was used to predict the potential targets of evodiamine against cancer cell migration. Western blot assay was performed to investigate the signaling pathway through which evodiamine inhibits cell proliferation and migration. The binding of evodiamine to PI3K and AKT was verified by molecular docking. As a consequence, 24 active compounds and 141 corresponding targets were obtained through a network pharmacology-based approach. The results of PPI analysis, GO enrichment, and KEGG pathway enrichment indicated that molecules in the PI3K/AKT/NF-κB signaling pathway were the potential targets of EF against prostate cancer, and evodiamine was the potential active compound. In vitro study demonstrated that evodiamine displays antiproliferative effect on DU145 cells obviously. Evodiamine induces G2/M cell cycle arrest by Cdc25c/CDK1/cyclin B1 signaling. Additionally, evodiamine also promotes mitochondrial apoptosis and inhibits cell migration through PI3K/AKT/NF-κB signaling in DU145 cells. In conclusion, evodiamine is the active compound of EF to inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway, indicating that evodiamine may serve as a potential lead drug for prostate cancer treatment.


Assuntos
Medicamentos de Ervas Chinesas , Evodia , Neoplasias da Próstata , Linhagem Celular Tumoral , Proliferação de Células , Medicamentos de Ervas Chinesas/farmacologia , Evodia/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas , Transdução de Sinais
4.
Mol Cancer ; 21(1): 52, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164788

RESUMO

Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.


Assuntos
Inteligência Artificial , Neoplasias , Adenosina/química , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico
5.
Chin J Nat Med ; 18(9): 696-703, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32928513

RESUMO

Hypoxia is a prominent feature of tumors. Hypoxia-inducible factor-1α (HIF-1α), a major subunit of HIF-1, is overexpressed in hypoxic tumor tissues and activates the transcription of many oncogenes. Accumulating evidence has demonstrated that HIF-1α promotes tumor angiogenesis, metastasis, metabolism, and immune evasion. Natural products are an important source of antitumor drugs and numerous studies have highlighted the crucial role of these agents in modulating HIF-1α. The present review describes the role of HIF-1α in tumor progression, summarizes natural products used as HIF-1α inhibitors, and discusses the potential of developing natural products as HIF-1α inhibitors for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/fisiopatologia , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neovascularização Patológica/fisiopatologia
6.
Phytomedicine ; 78: 153302, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32823242

RESUMO

BACKGROUND: Therapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce. PURPOSE: We aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway. METHODS: We examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis. RESULTS: We found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1. CONCLUSIONS: Our results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.


Assuntos
Angiopoietina-2/metabolismo , Ginsenosídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Receptor TIE-2/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Axitinibe/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/fisiologia , Panax notoginseng/química , Ratos Sprague-Dawley , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA