Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1085022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684732

RESUMO

A large amount of agro-industrial residues are produced from the planting, production and processing of traditional Chinese herbs. As a tonic, edible, and economical herb, Codonopsis pilosula root has been extensively developed into medicine and functional food. However, thousands of tons of aerial parts (stems, leaves, flowers and fruits) have been directly discarded after harvest each year. To utilise agro-wastes, Pleurotus ostreatus was cultivated on a basal substrate supplemented with C. pilosula stems and leaves (CSL). Physicochemical analyses revealed that the basal substrate mixed with CSL was more abundant in cellulose, hemicellulose, and most of micronutrients such as K, Ca, Mg, S, Fe, Zn and Mo. After the first flush, the fruit bodies in CSL group exhibited a higher fresh weight, a wider average pileus diameter and a lower moisture level. Nutrition analyses presented a higher protein content and a lower fat content in mushrooms from CSL group compared with control group. Interestingly, 14 amino acids (glutamine, arginine, valine, leucine, and etc.) and 3 micronutrients (Se, Fe and Zn) were increased after CSL addition to the substrate. Based on untargeted metabolomics, a total of 710 metabolites were annotated. Compared with control group, there were 142 and 117 metabolites significantly increased and decreased in the CSL group. Most of them were grouped into classes of amino acids and peptids, fatty acids, carbohydrates, terpenoids, and etc. Moreover, an abundance of phytometabolites from Codonopsis were detected in P. ostreatus from CSL group, including polyacetylenes or polyenes, flavonoids, alkaloids, terpenoids, organic acids, and etc. UPLC-MS/MS results demonstrated that lobetyolin content in the CSL group samples was 0.0058%. In summary, the aerial parts of C. pilosula processed for use in the production of edible mushroom is an emerging strategy to converting agricultural waste into functional foods.

2.
Chin J Integr Med ; 28(9): 817-822, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34241804

RESUMO

OBJECTIVE: To study the mechanism of Shengmai Injection (SMI, ) on anti-sepsis and protective activities of intestinal mucosal barrier. METHODS: The contents of 11 active components of SMI including ginsenoside Rb1, Rb2, Rb3, Rd, Re, Rf, Rg1, Rg2, ophioposide D, schisandrol A and schisantherin A were determined using ultra-performance liquid chromatography. Fifty mice were randomly divided into the blank, the model, the low-, medium- and high-dose SMI groups (0.375, 0.75, 1.5 mL/kg, respectively) by random number table, 10 mice in each group. In SMI group, SMI was administrated to mice daily via tail vein injection for 3 consecutive days, while the mice in the blank and model groups were given 0.1 mL of normal saline. One hour after the last SMI administration, except the blank group, the mice in other groups were intraperitoneally injected with lipopolysaccharide (LPS) saline solution (2 mL/kg) at a dosage of 5 mL/kg for development of endotoxemia mice model. The mice in the blank group were given the same volume of normal saline. Inflammatory factors including interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), interleukin (IL)-2 and IL-10 were measured by flow cytometry. Myosin light-chain kinase (MLCK), nuclear factor κB (NF-κB) levels, and change of Occludin proteins in jejunum samples were analyzed by Western blot. RESULTS: The decreasing trends of INF-γ, TNF-α and IL-2 were found in serum of SMI treatment groups. In SMI-treated mice, the content of Occludin increased and MLCK protein decreased compared with the model group (P<0.05 or P<0.01). The content of cellular and nuclear NF-κB did not change significantly (P>0.05). CONCLUSION: SMI may exert its anti-sepsis activity mainly through NF-κB-pro-inflammatory factor-MLCK-TJ cascade.


Assuntos
NF-kappa B , Sepse , Animais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Camundongos , NF-kappa B/metabolismo , Ocludina , Solução Salina , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Plant Sci ; 12: 814011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082817

RESUMO

Codonopsis pilosula has been used in traditional Chinese medicine for hundreds of years, where it has been used to treat anaemia, fatigue, a weak spleen, and stomach problems, among other ailments. The roots of C. pilosula are considered medicinal, while the aerial parts are always directly discarded after harvest in autumn or winter. Some studies have shown that the stems and leaves of C. pilosula also contain a variety of active metabolites, including saponins, flavonoids, terpenoids, and polysaccharides. To efficiently utilise resources, waste products from C. pilosula leaves and stems were analysed by untargeted metabolomics and chemometrics. A total of 1508 metabolites were detected and annotated, of which 463 were identified as differentially expressed metabolites (DEMs). These DEMs were grouped into classes, such as carboxylic acids and derivatives, steroids, organic oxygen compounds, fatty acyls, prenol lipids, and flavonoids. Metabolic profiling of C. pilosula tissues showed that the contents of polyacetylenes, polyenes, flavonoids, some alkaloids, steroids, terpenoids, and organic acids were higher in stems and leaves, whereas the contents of the main lignans and some alkaloids were more enriched in roots. Moreover, C. pilosula stems and leaves also contained a lobetyolin, syringin and atractylenolide III, which were detected by LC-MS/MS and HPLC-UV. The extracts of C. pilosula aerial parts also showed stronger antioxidant properties than roots. C. pilosula stems and leaves were rich in active ingredients and might have great value for development and utilisation.

4.
Biomed Pharmacother ; 133: 111014, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33246225

RESUMO

BACKGROUND: Intestinal microbiota is a novel drug target of metabolic diseases, especially for those with poor oral bioavailability. Nuciferine, with poor bioavailability, has an anti-hyperlipidemic effect at low dosages. PURPOSE: In the present study, we aimed to explore the role of intestinal microbiota in the anti-hyperlipidemic function of nuciferine and identify the key bacterial targets that might confer the therapeutic actions. METHODS: The contribution of gut microbes in the anti-hyperlipidemic effect of nuciferine was evaluated by conventional and antibiotic-established pseudo-sterile mice. Whole-metagenome shotgun sequencing was used to characterize the changes in microbial communities by various agents. RESULTS: Nuciferine exhibited potent anti-hyperlipidemic and liver steatosis-alleviating effects at the doses of 7.5-30 mg/kg. The beneficial effects of nuciferine were substantially abolished when combined with antibiotics. Metagenomic analysis showed that nuciferine significantly shifted the microbial structure, and the enrichment of Akkermansia muciniphila was closely related to the therapeutic effect of nuciferine. CONCLUSIONS: Our results revealed that gut microbiota played an essential role in the anti-hyperlipidemic effect of nuciferine, and enrichment of Akkermansia muciniphila represented a key mechanism through which nuciferine exerted its therapeutic effects.


Assuntos
Aporfinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Intestinos/microbiologia , Lipídeos/sangue , Akkermansia/efeitos dos fármacos , Akkermansia/genética , Akkermansia/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Biomarcadores/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Hiperlipidemias/sangue , Hiperlipidemias/microbiologia , Masculino , Metagenoma , Metagenômica , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/sangue , Obesidade/microbiologia , Obesidade/prevenção & controle , RNA-Seq
5.
Artigo em Inglês | MEDLINE | ID: mdl-32831866

RESUMO

Shengmai injection (SMI) contains Ginsen Radix et Rhizoma Rubra, Ophiopogon japonicus, and Schisandrae Chinensis Fructus. It is used as a supportive herbal medicine in the management of sepsis, systemic inflammatory response syndrome, and septic or hemorrhagic shock. An UPLC method was established to identify and evaluate SMI fingerprints. Fingerprint similarities of 9 batches of SMI were compared. The network platform, "TCM-components-core targets-key pathways," was established, and the mechanism of SMI in the treatment of sepsis was investigated. The similarity of 9 batches of SMI fingerprints was greater than 0.91. 44 peaks were selected as the common peaks, of which 11 peaks were identified. KEGG functional pathway analysis showed SMI was mainly involved in the pathways of cancer, cell cycle, and p53 signaling, suggesting SMI protects multiple organs via regulating immunity, inflammation, apoptosis, and energy metabolism. GO enrichment analysis showed active SMI components regulated various biological processes and altered the pathophysiology of sepsis. The interplays between SMI and multiple energy metabolism signaling cascades confer protection from life-threatening multiple organ failure in sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA