Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biomed Pharmacother ; 168: 115708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857255

RESUMO

High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.


Assuntos
Óleos de Peixe , Proteoma , Ratos , Animais , Óleos de Peixe/farmacologia , Sacarose , Ratos Sprague-Dawley , Dieta , Suplementos Nutricionais , Estresse Oxidativo , Obesidade , Córtex Cerebral , Dieta Hiperlipídica/efeitos adversos
2.
Mar Drugs ; 19(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677454

RESUMO

Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague-Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Óleos de Peixe/farmacologia , Administração Oral , Animais , Organismos Aquáticos , Fatores de Risco Cardiometabólico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Masculino , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Front Immunol ; 12: 608875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968013

RESUMO

Adipose tissue is now recognized as an active organ with an important homeostatic function in glucose and lipid metabolism and the development of insulin resistance. The present research investigates the role of lipid mediators and lipid profiling for controlling inflammation and the metabolic normal function of white adipose tissue from rats suffering from diet-induced prediabetes. Additionally, the contribution to the adipose lipidome induced by the consumption of marine ω-3 PUFAs as potential regulators of inflammation is addressed. For that, the effects on the inflammatory response triggered by high-fat high-sucrose (HFHS) diets were studied in male Sprague-Dawley rats. Using SPE-LC-MS/MS-based metabolo-lipidomics, a range of eicosanoids, docosanoids and specialized pro-resolving mediators (SPMs) were measured in white adipose tissue. The inflammatory response occurring in prediabetic adipose tissue was associated with the decomposition of ARA epoxides to ARA-dihydroxides, the reduction of oxo-derivatives and the formation of prostaglandins (PGs). In an attempt to control the inflammatory response initiated, LOX and non-enzymatic oxidation shifted toward the production of the less pro-inflammatory EPA and DHA metabolites rather than the high pro-inflammatory ARA hydroxides. Additionally, the change in LOX activity induced the production of intermediate hydroxides precursors of SPMs as protectins (PDs), resolvins (Rvs) and maresins (MaRs). This compensatory mechanism to achieve the restoration of tissue homeostasis was significantly strengthened through supplementation with fish oils. Increasing proportions of ω-3 PUFAs in adipose tissue significantly stimulated the formation of DHA-epoxides by cytochrome P450, the production of non-enzymatic EPA-metabolites and prompted the activity of 12LOX. Finally, protectin PDX was significantly reduced in the adipose tissue of prediabetic rats and highly enhanced through ω-3 PUFAs supplementation. Taken together, these actively coordinated modifications constitute key mechanisms to restore adipose tissue homeostasis with an important role of lipid mediators. This compensatory mechanism is reinforced through the supplementation of the diet with fish oils with high and balanced contents of EPA and DHA. The study highlights new insides on the targets for effective treatment of incipient diet-induced diabetes and the mechanism underlying the potential anti-inflammatory action of marine lipids.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Óleos de Peixe/administração & dosagem , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Biomarcadores , Cromatografia Líquida , Dieta , Mediadores da Inflamação , Lipidômica/métodos , Masculino , Ratos , Espectrometria de Massas em Tandem
4.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922113

RESUMO

Polyphenols and omega-3 polyunsaturated fatty acids from fish oils, i.e., eicosapentaenoic and docosahexaenoic acids, are well-recognized nutraceuticals, and their single antioxidant and anti-inflammatory properties have been demonstrated in several studies found in the literature. It has been reported that the combination of these nutraceuticals can lead to three-fold increases in glutathione peroxidase activity, two-fold increases in plasma antioxidant capacity, decreases of 50-100% in lipid peroxidation, protein carbonylation, and urinary 8-isoprotanes, as well as 50-200% attenuation of common inflammation biomarkers, among other effects, as compared to their individual capacities. Therefore, the adequate combination of those bioactive food compounds and their single properties should offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human metabolic diseases, frequently diet-induced, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent evidence accumulated during the last decade about the cooperative action between polyphenols and fish oils against diet-related metabolic alterations, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for strategies for personalized nutrition based on these nutraceuticals.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético , Ácidos Graxos Ômega-3 , Óleos de Peixe/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
Foods ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557198

RESUMO

The combined supplementation of buckwheat D-fagomine (FG) and fish omega-3 polyunsaturated fatty acids (ω-3 PUFA) attenuates the development of insulin resistance in rats fed a high-fat (HF) diet. This study aimed to examine the effects of combined supplementation with FG and ω-3 PUFA on dyslipidemia, transaminases, interleukin-6, and oxidative stress. Forty-five male Sprague-Dawley rats were fed a standard diet, an HF diet, an HF diet supplemented with FG, an HF diet supplemented with ω-3 PUFA, or an HF diet supplemented with FG and ω-3 PUFA for 21 weeks. Triacylglycerol, cholesterol, aspartate aminotransferase, alanine aminotransferase, and interleukin-6 were measured. The assessment of oxidative stress included plasma antioxidant capacity, antioxidant enzyme activities, glutathione content, lipid peroxidation, and protein carbonylation. The combined supplementation with FG and ω-3 PUFA did not attenuate the slight accumulation of liver cholesterol induced by the HF diet but normalized the plasma alanine aminotransferase activity. Rats fed the HF diet supplemented with the combination showed a lower amount of plasma interleukin-6 than those fed a standard diet. The combination attenuated oxidative damage induced by the HF diet, decreased antioxidant enzyme activities, and enhanced glutathione status. The beneficial effects of the combination of FG and ω-3 PUFA on oxidative stress and related risk factors in pre-obese rats were mainly modulated by ω-3 PUFA.

6.
Mar Drugs ; 18(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560216

RESUMO

Diacylglycerols (DAG) and ceramides have been suggested as early predictors of insulin resistance. This study was aimed to examine the combined effects of fish oil (FO) and grape seed extract (GSE) on hepatic endogenous antioxidants, DAG and ceramides in diet-induced early stages of insulin resistance. Thirty-five rats were fed one of the following diets: (1) a standard diet (STD group), (2) a high-fat high-sucrose diet (HFHS group), (3) an HFHS diet enriched with FO (FO group), (4) an HFHS diet enriched with GSE (GSE group) or (5) an HFHS diet enriched with FO and GSE (FO + GSE group). In the liver, endogenous antioxidants were measured using spectrophotometric and fluorometric techniques, and non-targeted lipidomics was conducted for the assessment of DAG and ceramides. After 24 weeks, the FO + GSE group showed increased glutathione peroxidase activity, as well as monounsaturated fatty acid and polyunsaturated fatty acid-containing DAG, and long-chain fatty acid-containing ceramides abundances compared to the STD group. The FO and GSE combination induced similar activation of the antioxidant system and bioactive lipid accumulation in the liver than the HFHS diet without supplementation. In addition, the FO and GSE combination increased the abundances of polyunsaturated fatty acid-containing DAG in the liver.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Extrato de Sementes de Uva/administração & dosagem , Resistência à Insulina , Fígado/efeitos dos fármacos , Animais , Ceramidas/análise , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/análise , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Insaturados , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Fígado/metabolismo , Ratos
7.
Nutrients ; 11(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683529

RESUMO

Some functional food components may help maintain homeostasis by promoting balanced gut microbiota. Here, we explore the possible complementary effects of d-fagomine and ω-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA 1:1) on putatively beneficial gut bacterial strains. Male Sprague-Dawley rats were supplemented with d-fagomine, ω-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were evaluated in fecal DNA by quantitative real-time polymerase chain reaction (qRT-PCR) and short-chain fatty acids were determined by gas chromatography. We found that the populations of the genus Prevotella remained stable over time in animals supplemented with d-fagomine, independently of ω-3 PUFA supplementation. Animals in these groups gained less weight than controls and rats given only ω-3 PUFAs. d-Fagomine supplementation together with ω-3 PUFAs maintained the relative populations of Bacteroides. ω-3 PUFAs alone or combined with d-fagomine reduced the amount of acetic acid and total short-chain fatty acids in feces. The plasma levels of pro-inflammatory arachidonic acid derived metabolites, triglycerides and cholesterol were lower in both groups supplemented with ω-3 PUFAs. The d-fagomine and ω-3 PUFAs combination provided the functional benefits of each supplement. Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while reducing weight gain and providing the anti-inflammatory and cardiovascular benefits of ω-3 PUFAs.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imino Piranoses/farmacologia , Administração Oral , Animais , Bacteroides/efeitos dos fármacos , Suplementos Nutricionais , Fagopyrum/química , Ácidos Graxos Ômega-3/administração & dosagem , Imino Piranoses/administração & dosagem , Masculino , Prevotella/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Alimentos Marinhos
8.
Sci Rep ; 9(1): 16628, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719544

RESUMO

Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of D-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with D-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with D-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of D-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of D-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Imino Piranoses/uso terapêutico , Estado Pré-Diabético/etiologia , Animais , Glicemia/análise , Quimioterapia Combinada , Ácidos Graxos Ômega-3/administração & dosagem , Teste de Tolerância a Glucose , Imino Piranoses/administração & dosagem , Insulina/sangue , Leptina/sangue , Masculino , Estado Pré-Diabético/microbiologia , Estado Pré-Diabético/prevenção & controle , Ratos , Ratos Sprague-Dawley , Fatores de Risco
9.
Mar Drugs ; 18(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906027

RESUMO

Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fígado/efeitos dos fármacos , Polifenóis/farmacologia , Proteínas/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Fígado/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/administração & dosagem , Carbonilação Proteica/efeitos dos fármacos , Proteômica , Ratos , Ratos Endogâmicos WKY , Vitis/química
10.
Mar Drugs ; 16(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261666

RESUMO

The present study addressed the ability of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFA), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to ameliorate liver protein damage derived from oxidative stress and induced by consumption of high-caloric diets, typical of Westernized countries. The experimental design included an animal model of Sprague-Dawley rats fed high-fat high-sucrose (HFHS) diet supplemented with ω-3 EPA and DHA for a complete hepatic proteome analysis to map carbonylated proteins involved in specific metabolic pathways. Results showed that the intake of marine ω-3 PUFA through diet significantly decreased liver protein carbonylation caused by long-term HFHS consumption and increased antioxidant system. Fish oil modulated the carbonylation level of more than twenty liver proteins involved in critical metabolic pathways, including lipid metabolism (e.g., albumin), carbohydrate metabolism (e.g., pyruvate carboxylase), detoxification process (e.g., aldehyde dehydrogenase 2), urea cycle (e.g., carbamoyl-phosphate synthase), cytoskeleton dynamics (e.g., actin), or response to oxidative stress (e.g., catalase) among others, which might be under the control of diet marine ω-3 PUFA. In parallel, fish oil significantly changed the liver fatty acid profile given by the HFHS diet, resulting in a more anti-inflammatory phenotype. In conclusion, the present study highlights the significance of marine ω-3 PUFA intake for the health of rats fed a Westernized diet by describing several key metabolic pathways which are protected in liver.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Doenças Metabólicas/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Eur J Nutr ; 57(1): 339-349, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27730364

RESUMO

PURPOSE: Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). METHODS: Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. RESULTS: A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. CONCLUSIONS: These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Extrato de Sementes de Uva/química , Proantocianidinas/metabolismo , Vitis , Animais , Catequina/metabolismo , Dieta , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Extrato de Sementes de Uva/administração & dosagem , Proantocianidinas/administração & dosagem , Proantocianidinas/urina , Ratos , Ratos Endogâmicos WKY
12.
Mar Drugs ; 15(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820493

RESUMO

Marine lipids, especially ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have largely been linked to prevention of diet-induced diseases. The anti-inflammatory and hypolipidemic properties of EPA and DHA supplementation have been well-described. However, there is still a significant lack of information about their particular mechanism of action. Furthermore, repeated meta-analyses have not shown conclusive results in support of their beneficial health effects. Modern "omics" approaches, namely proteomics and lipidomics, have made it possible to identify some of the mechanisms behind the benefits of marine lipids in the metabolic syndrome and related diseases, i.e., cardiovascular diseases and type 2 diabetes. Although until now their use has been scarce, these "omics" have brought new insights in this area of nutrition research. The purpose of the present review is to comprehensively show the research articles currently available in the literature which have specifically applied proteomics, lipidomics or both approaches to investigate the role of marine lipids intake in the prevention or palliation of these chronic pathologies related to diet. The methodology adopted, the class of marine lipids examined, the diet-related disease studied, and the main findings obtained in each investigation will be reviewed.


Assuntos
Organismos Aquáticos , Doenças Cardiovasculares/prevenção & controle , Gorduras Insaturadas na Dieta/administração & dosagem , Proteômica , Doenças Cardiovasculares/etiologia , Dieta/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Fitoterapia
13.
Food Res Int ; 97: 133-140, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578033

RESUMO

Studies of the bioavailability of proanthocyanidins usually consider them independently of other dietary constituents, while there is a tendency in the field of functional foods towards the combination of different bioactive compounds in a single product. This study examined the long-term effects of ω-3 polyunsaturated fatty acids of marine origin on the metabolic fate of grape proanthocyanidins. For this, female adult Wistar-Kyoto rats were fed (18weeks) with a standard diet supplemented or not with eicosapentaenoic acid/docosahexaenoic acid (1:1, 16.6g/kg feed), proanthocyanidin-rich grape seed extract (0.8g/kg feed) or both. A total of 39 microbial-derived metabolites and 16 conjugated metabolites were detected by HPLC-MS/MS either in urine or in the aqueous fraction of feces. An unexpected significant increase in many proanthocyanidin metabolites in urine and feces was observed in the group supplemented with ω-3 polyunsaturated fatty acids group as compared to the animals fed a standard diet, which contains a small amount of polyphenols. However, proanthocyanidin metabolites in rats given ω-3 polyunsaturated fatty acids and grape seed extract did not significantly differ from those in the group supplemented only with grape seed extract. It was concluded that ω-3 polyunsaturated fatty acids collaborate in the metabolism of polyphenols when present at low doses in the feed matrix, while the capacity of ω-3 polyunsaturated fatty acids to induce microbiota transformations when proanthocyanidins are present at high doses is not relevant compared to that of polyphenols themselves.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Proantocianidinas/metabolismo , Animais , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Fezes/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal/fisiologia , Fenóis/metabolismo , Fenóis/urina , Ratos , Ratos Endogâmicos WKY , Espectrometria de Massas em Tandem
14.
Food Res Int ; 97: 364-371, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578061

RESUMO

ω-3 Polyunsaturated fatty acids (PUFAs) reduce risk factors for cardiovascular diseases (CVD) and other pathologies that involve low-grade inflammation. They have recently been shown to exert complementary functional effects with proanthocyanidins. As the reduction of health-promoting gut bacteria such as lactobacilli and bifidobacteria has been linked to a number of alterations in the host, the aim of this study was to determine whether PUFAs and proanthocyanidins also cooperate in maintaining well-balanced microbiota. To this end, rats were supplemented for 6months with eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1:1 (16.6g/kg feed); proanthocyanidin-rich grape seed extract (GSE, 0.8g/kg feed); or both. Plasma adiponectin, cholesterol, and urine nitrites were measured. Gut bacterial subgroups were evaluated in fecal DNA by qRT-PCR. Short-chain fatty acids (SCFAs) were determined in feces by gas chromatography. Body and adipose tissue weights were found to be higher in the animals given ω-3 PUFAs, while their energy intake was lower. Plasma cholesterol was lower in ω-3 PUFA supplemented groups, while adiponectin and urine nitrites were higher. ω-3 PUFAs reduced the population of Lactobacillales and L. acidophilus after 6months of supplementation. GSE significantly reduced L. plantarum and B. longum. The combination of ω-3 PUFAs and GSE maintained the health-promoting bacteria at levels similar to those of the control group. Acetic acid was increased by the ω-3 PUFA individual supplementation, while the combination with GSE kept this value similar to the control value. In conclusion, while individual supplementations with ω-3 PUFAs or GSE modify the populations of Lactobacillus, Bifidobacterium and microbial products (SCFAs), their combination maintains the standard proportions of these bacterial subgroups and their function while also providing the cardiovascular benefits of ω-3 PUFAs.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proantocianidinas/farmacologia , Animais , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Fezes/microbiologia , Feminino , Lipídeos/sangue , Ratos , Ratos Wistar
15.
J Nutr Biochem ; 41: 84-97, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28064013

RESUMO

This study considered the physiological modulation of liver proteins due to the supplementation with fish oils under two dietary backgrounds: standard or high in fat and sucrose (HFHS), and their combination with grape polyphenols. By using a quantitative proteomics approach, we showed that the capacity of the supplements for regulating proteins depended on the diet; namely, 10 different proteins changed into standard diets, while 45 changed into the HFHS diets and only scarcely proteins were found altered in common. However, in both contexts, fish oils were the main regulatory force, although the addition of polyphenols was able to modulate some fish oils' effects. Moreover, we demonstrated the ability of fish oils and their combination with grape polyphenols in improving biochemical parameters and reducing lipogenesis and glycolysis enzymes, enhancing fatty acid beta-oxidation and insulin signaling and ameliorating endoplasmic reticulum stress and protein oxidation when they are included in an unhealthy diet.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Regulação da Expressão Gênica , Extrato de Sementes de Uva/uso terapêutico , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Estresse do Retículo Endoplasmático , Feminino , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polifenóis/uso terapêutico , Proteômica/métodos , Distribuição Aleatória , Ratos Endogâmicos WKY
16.
Food Funct ; 7(9): 3981-3988, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722538

RESUMO

A high intake of fat and sucrose can dramatically increase bioactive lipids such as ceramides in tissues. Ceramides regulate several steps in the insulin signal pathway. The effects of n-3 PUFA on insulin resistance are inconsistent, especially in liver. We investigated the effect of n-3 PUFA (EPA/DHA 1 : 1) from fish oil on hepatic ceramides in a pre-diabetic animal model. Three groups of rats were fed standard feed, high fat high sucrose feed (HFHS) or HFHS enriched with n-3 PUFA. We investigated by lipidomic analysis how supplementation of a HFHS diet with n-3 PUFA modifies the hepatic ceramide profile triggered by a HFHS diet. Our results show that n-3 PUFA modified the ceramide profile of the liver and reduced their total content in pre-diabetic rats. Significant linear correlations were observed between ceramides and biochemical insulin parameters. Long chain ceramide 18:1/18:0 showed a positive correlation with the HOMA index. Very long chain ceramide 18:1/24:0 showed a negative correlation with insulin and the HOMA index. Finally, very long chain ceramide 18:1/20:0 correlated negatively with glucose levels, plasmatic insulin levels and the HOMA index. In conclusion, the modulation of the ceramide profile in pre-diabetic rats may explain the protective action of n-3 PUFA against liver insulin resistance (IR) caused by an HFHS diet. We confirm the protective role of very long chain ceramide 18:1/24:0 and the harmful role of long chain ceramide 18:1/18:0 in the pre-diabetic state and propose ceramide 18:1/20:0 as a biomarker of early liver IR in rats.


Assuntos
Ceramidas/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Resistência à Insulina , Fígado/metabolismo , Estado Pré-Diabético/prevenção & controle , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Ceramidas/química , Dieta Ocidental/efeitos adversos , Feminino , Hemoglobinas Glicadas/análise , Hipoglicemiantes/uso terapêutico , Mobilização Lipídica , Metabolômica/métodos , Peso Molecular , Estado Pré-Diabético/sangue , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/metabolismo , Distribuição Aleatória , Ratos Endogâmicos WKY
17.
Br J Nutr ; 113(6): 878-87, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25720761

RESUMO

The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Hipertensão/prevenção & controle , Síndrome Metabólica/dietoterapia , Obesidade/complicações , Estado Pré-Diabético/prevenção & controle , Gordura Abdominal/enzimologia , Gordura Abdominal/imunologia , Gordura Abdominal/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Proteína C-Reativa/análise , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Eritrócitos/enzimologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Óleos de Peixe/uso terapêutico , Hipercolesterolemia/etiologia , Hipercolesterolemia/prevenção & controle , Hipertensão/etiologia , Rim/enzimologia , Rim/imunologia , Rim/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/imunologia , Síndrome Metabólica/fisiopatologia , Estresse Oxidativo , Oxirredutases/sangue , Oxirredutases/metabolismo , Estado Pré-Diabético/etiologia , Distribuição Aleatória , Ratos Mutantes
18.
J Proteomics ; 106: 246-59, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24793432

RESUMO

The study innovatively pinpoints target proteins of carbonylation, a key PTM induced by oxidative stress, in the SHROB (genetically obese spontaneously hypertensive) rat model of metabolic syndrome (MetS). Protein carbonylation was assessed by a fluorescence-labeling proteomics approach, and complemented with biometric and biochemical markers of MetS. SHROB and healthy Wistar rats were fed two diets, soybean and linseed oil supplementations, in order to distinguish intrinsic carbonylation of SHROB animals from diet-modulated carbonylation unrelated to MetS. First exploratory data showed similar carbonylation patterns and metabolic conditions in SHROB rats fed soybean and linseed, but different from Wistar animals. A total of 18 carbonylated spots in liver, and 12 in skeletal tissue, related to pathways of lipid (29.6%), carbohydrate (25.9%) and amino acid (18.5%) metabolisms, were identified. In particular, SHROB animals present higher carbonylation in four liver proteins belonging to lipid metabolism, redox regulation and chaperone activity (ALDH2, PDI, PDIA3, PECR), and in the skeletal muscle ALDOA that is involved in muscle dysfunction. Conversely, SHROB rats display lower carbonylation in liver albumin, AKR1C9, ADH1 and catalase. This investigation provides a novel perspective of carbonylation in the context of metabolic disorders, and may be a starting point to characterize new redox pathways exacerbating MetS. BIOLOGICAL SIGNIFICANCE: Oxidative stress is a concomitant factor in the pathogenesis of MetS that induces oxidative PTM as carbonylation. Through the use of a redox proteomics approach, we have thoroughly mapped the occurrence of protein targets of carbonylation in the genetically-induced MetS model SHROB rat. The present research brings a new insight of MetS pathogenesis and it may provide valuable information to understand the biological impact of oxidative stress in patients with MetS.


Assuntos
Síndrome Metabólica/metabolismo , Estresse Oxidativo , Carbonilação Proteica , Animais , Antioxidantes/metabolismo , Carbono/metabolismo , Catalase/metabolismo , Cromatografia Líquida , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Feminino , Linho , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Oxirredução , Oxigênio/metabolismo , Proteômica , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Glycine max , Espectrometria de Massas em Tandem
19.
Lipids Health Dis ; 12: 140, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083393

RESUMO

BACKGROUND: High consumption of fish carries a lower risk of cardiovascular disease as a consequence of dietary omega-3 long chain polyunsaturated fatty acid (n-3 PUFA; especially EPA and DHA) content. A controversy exists about the component/s responsible of these beneficial effects and, in consequence, which is the best proportion between both fatty acids. We sought to determine, in healthy Wistar rats, the proportions of EPA and DHA that would induce beneficial effects on biomarkers of oxidative stress, and cardiovascular disease risk. METHODS: Female Wistar rats were fed for 13 weeks with 5 different dietary supplements of oils; 3 derived from fish (EPA/DHA ratios of 1:1, 2:1, 1:2) plus soybean and linseed as controls. The activities of major antioxidant enzymes (SOD, CAT, GPX, and GR) were determined in erythrocytes and liver, and the ORAC test was used to determine the antioxidant capacity in plasma. Also measured were: C reactive protein (CRP), endothelial dysfunction (sVCAM and sICAM), prothrombotic activity (PAI-1), lipid profile (triglycerides, cholesterol, HDLc, LDLc, Apo-A1, and Apo-B100), glycated haemoglobin and lipid peroxidation (LDL-ox and MDA values). RESULTS: After three months of nutritional intervention, we observed statistically significant differences in the ApoB100/ApoA1 ratio, glycated haemoglobin, VCAM-1, SOD and GPx in erythrocytes, ORAC values and LDL-ox. Supplementation with fish oil derived omega-3 PUFA increased VCAM-1, LDL-ox and plasma antioxidant capacity (ORAC). Conversely, the ApoB100/ApoA1 ratio and percentage glycated haemoglobin decreased. CONCLUSIONS: Our results showed that a diet of a 1:1 ratio of EPA/DHA improved many of the oxidative stress parameters (SOD and GPx in erythrocytes), plasma antioxidant capacity (ORAC) and cardiovascular risk factors (glycated haemoglobin) relative to the other diets.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Eritrócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Apolipoproteínas/sangue , Proteína C-Reativa/metabolismo , Catalase/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta , Eritrócitos/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Hemoglobinas Glicadas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas LDL/sangue , Fígado/metabolismo , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue
20.
Free Radic Biol Med ; 55: 8-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159545

RESUMO

The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 <2:1 ≈ linseed < soybean. Oxidation patterns of myofibrillar skeletal muscle proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Proteínas/metabolismo , Animais , Suplementos Nutricionais , Feminino , Óleo de Semente do Linho/farmacologia , Oxirredução/efeitos dos fármacos , Proteínas/química , Ratos , Ratos Wistar , Óleo de Soja/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA