Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 170(4): 1962-74, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26850276

RESUMO

The walls of Nicotiana alata pollen tubes contain a linear arabinan composed of (1,5)-α-linked arabinofuranose residues. Although generally found as a side chain on the backbone of the pectic polysaccharide rhamnogalacturonan I, the arabinan in N. alata pollen tubes is considered free, as there is no detectable rhamnogalacturonan I in these walls. Carbohydrate-specific antibodies detected arabinan epitopes at the tip and along the shank of N. alata pollen tubes that are predominantly part of the primary layer of the bilayered wall. A sequence related to ARABINAN DEFICIENT1 (AtARAD1), a presumed arabinan arabinosyltransferase from Arabidopsis (Arabidopsis thaliana), was identified by searching an N alata pollen transcriptome. Transcripts for this ARAD1-like sequence, which we have named N. alata ARABINAN DEFICIENT-LIKE1 (NaARADL1), accumulate in various tissues, most abundantly in the pollen grain and tube, and encode a protein that is a type II membrane protein with its catalytic carboxyl terminus located in the Golgi lumen. The NaARADL1 protein can form homodimers when transiently expressed in Nicotiana benthamiana leaves and heterodimers when coexpressed with AtARAD1 The expression of NaARADL1 in Arabidopsis led to plants with more arabinan in their walls and that also exuded a guttation fluid rich in arabinan. Chemical and enzymatic characterization of the guttation fluid showed that a soluble, linear α-(1,5)-arabinan was the most abundant polymer present. These results are consistent with NaARADL1 having an arabinan (1,5)-α-arabinosyltransferase activity.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Nicotiana/enzimologia , Pólen/enzimologia , Polissacarídeos/metabolismo , Fluorescência , Complexo de Golgi/metabolismo , Pentosiltransferases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Multimerização Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frações Subcelulares/enzimologia
2.
PLoS One ; 8(10): e77140, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116212

RESUMO

Nicotiana alata pollen tubes are a widely used model for studies of polarized tip growth and cell wall synthesis in plants. To better understand these processes, RNA-Seq and de novo assembly methods were used to produce a transcriptome of N. alata pollen grains. Notable in the reconstructed transcriptome were sequences encoding proteins that are involved in the synthesis and remodelling of xyloglucan, a cell wall polysaccharide previously not thought to be deposited in Nicotiana pollen tube walls. Expression of several xyloglucan-related genes in actively growing pollen tubes was confirmed and xyloglucan epitopes were detected in the wall with carbohydrate-specific antibodies: the major xyloglucan oligosaccharides found in N. alata pollen grains and tubes were fucosylated, an unusual structure for the Solanaceae, the family to which Nicotiana belongs. Finally, carbohydrate linkages consistent with xyloglucan were identified chemically in the walls of N. alata pollen grains and pollen tubes grown in culture. The presence of a fucosylated xyloglucan in Nicotiana pollen tube walls was thus confirmed. The consequences of this discovery to models of pollen tube growth dynamics and more generally to polarised tip-growing cells in plants are discussed.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Xilanos/metabolismo , Genes de Plantas , Glucanos/análise , Glucanos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Nicotiana/metabolismo , Transcriptoma , Xilanos/análise , Xilanos/genética
3.
Plant Cell ; 20(5): 1289-302, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460606

RESUMO

Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácidos Hexurônicos/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , DNA Bacteriano/genética , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Pectinas/metabolismo , Pentosiltransferases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/genética , Nicotiana/metabolismo , Xilose/metabolismo , UDP Xilose-Proteína Xilosiltransferase
4.
Plant J ; 52(5): 791-802, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17892446

RESUMO

Members of a large family of cellulose synthase-like genes (CSLs) are predicted to encode glycosyl transferases (GTs) involved in the biosynthesis of plant cell walls. The CSLA and CSLF families are known to contain mannan and glucan synthases, respectively, but the products of other CSLs are unknown. Here we report the effects of disrupting ATCSLD5 expression in Arabidopsis. Both stem and root growth were significantly reduced in ATCSLD5 knock-out plants, and these plants also had increased susceptibility to the cellulose synthase inhibitor isoxaben. Antibody and carbohydrate-binding module labelling indicated a reduction in the level of xylan in stems, and in vitro GT assays using microsomes from stems revealed that ATCSLD5 knock-out plants also had reduced xylan and homogalacturonan synthase activity. Expression in Nicotiana benthamiana of ATCSLD5 and ATCSLD3, fluorescently tagged at either the C- or the N-terminal, indicated that these GTs are likely to be localized in the Golgi apparatus. However, the position of the fluorescent tag affected the subcellular localization of both proteins. The work presented provides a comprehensive analysis of the effects of disrupting ATCSLD5 in planta, and the possible role(s) of this gene and other ATCSLDs in cell wall biosynthesis are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Benzamidas/farmacologia , Glucosiltransferases/análise , Glucosiltransferases/genética , Glucuronidase/análise , Pectinas/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA